期刊文献+

融合激光SLAM实现平衡车智能导航

Implementation of the intelligent navigation of balance vehicle with laser SLAM
下载PDF
导出
摘要 国内现有的两轮智能平衡车几乎不具有自主避障与定位功能。为了提高其安全性与灵活性,在传统的平衡车基础上加入了激光SLAM技术,实现自主建图、路径规划、定位和避障。运用卡尔曼滤波器对六轴传感器采集的加速度和倾斜角进行数据融合处理,在建图和定位方面,采用Google发布的Cartographer算法,路径规划和避障上采用Navigation功能包集成的move_base下的Teb算法。由于激光雷达建图时需要车速比较缓慢,并且需要尽可能避免抖动,因此让车模保持稳定的运动状态就很重要,为此首先对传感器获得的数据进行滤波,其次对小车的PID参数进行细调。同时为了更方便地控制,加入蓝牙功能,通过蓝牙控制小车运动,实现快速建图。在加入了SLAM技术之后,传统的平衡车可以实现避障和定位功能,能够实时检测出静态和动态障碍物,并绕开障碍物规划出最优路线,实现了无人驾驶功能。 Based on the existing two-wheeled intelligent balance car in China,it has almost no autonomous obstacle avoidance and positioning functions.In order to improve its safety and flexibility,laser SLAM technology is applied to the traditional self-balancing car to realize autonomous mapping and path planning,positioning and obstacle avoidance.The Kalman filter is used to fuse the acceleration and tilt angle collected by the six-axis sensor.In terms of mapping and positioning,the Cartographer algorithm released by Google is used,and the Teb algorithm under move base integrated by the Navigation function package is used for path planning and obstacle avoidance.Since the speed of the vehicle is relatively slow and the jitter needs to be avoided as much as possible when mapping the lidar,it is very important to keep the vehicle model in a stable motion state.For this purpose,the data obtained by the sensor is firstly filtered,and then the PID parameters of the car are fine-tuned.At the same time,for more convenient control,the bluetooth function is added to control the movement of the car through bluetooth to achieve rapid map building.After adding SLAM technology,traditional self-balancing scooters can realize obstacle avoidance and positioning functions,detect static and dynamic obstacles in real time,and plan an optimal route around obstacles,realizing the function of unmanned driving.
作者 权钰涵 张啸 刘冬 罗睿 贺云 Quan Yuhan;Zhang Xiao;Liu Dong;Luo Rui;He Yun(College of Automation,Shenyang Aerospace University,Shenyang 110136,China;Shenyang Institute of Automation,Chinese Academy of Sciences,Shenyang 110016,China;Institutes for Robotics and Intelligent Manufacturing,Chinese Academy of Sciences,Shenyang 110169,China)
出处 《电子技术应用》 2023年第10期141-147,共7页 Application of Electronic Technique
关键词 遥感 传感器 SLAM建图与导航 Cartographer 蓝牙遥控 卡尔曼滤波 Teb算法 remote sensing sensor SLAM mapping and navigation Cartographer Bluetooth remote control Kalman filter Teb algorithm
  • 相关文献

参考文献14

二级参考文献75

  • 1庄严,王伟,王珂,徐晓东.移动机器人基于激光测距和单目视觉的室内同时定位和地图构建[J].自动化学报,2005,31(6):925-933. 被引量:55
  • 2The DIY Segway[ EB/OL]. web. mit. edu/first/segway.
  • 3Data Sheet. ±1.5g,±6g Three Axis Low - g Micromach- ined Accelerometer [ OL ]. http ://www. freescale, com/ files/sensors/doc/data_sheet/MMA7361LC, pdf.
  • 4Data Sheet. Piezoelectric Vibrating Gyroscopes[ OL]. ht- tp://www, murata, com/products/catalog/pdf/ENC - 03M. pdf.
  • 5The Balance Filter[ EB/OL]. wenku, baidu, com.
  • 6武二永,项志宇,沈敏一,刘济林.大规模环境下基于激光雷达的机器人SLAM算法[J].浙江大学学报(工学版),2007,41(12):1982-1986. 被引量:22
  • 7PROINOV P D. General local convergence theory for a class of iterative processes and its applications to newton' s method[J]. Journal of Complexity,2009,25 (1) : 38-62.
  • 8MARQUARDT D W. An algorithm for the least-squares estimation of nonlinear parameters [J]. Journal of the Society for Industrial and Applied Mathematics, 1963,11 (2) :431-441.
  • 9LEVENBERG K. A method for the solution of certain non-linear problems in least squares [J]. Quarterly Journal of Applied Mathmatics, 1944,2(2) : 164-168.
  • 10TRANSTRUM M K, MACHTA B B, SETHNA J P, Why are nonlinear fits to data so challenging [J]. Phys Rev Lett,2010(104) :060201.

共引文献286

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部