期刊文献+

基于POI数据的城市功能区识别研究 被引量:4

Research on the Identification of Urban Functional Areas Based on POI Data
下载PDF
导出
摘要 基于兴趣点数据与道路网络数据,选取济南市中心城区为研究区域,通过频数密度与类型比例计算,以街区为研究单元对济南中心城区功能区进行定量识别,并验证识别精度。将识别结果与《济南市城市总体规划(2011-2020年)》对比,提出功能区优化对策。研究结果表明:城市功能区自西向东呈现多中心分布特征,单一功能区呈现圈层分布特征。构建混淆矩阵,计算出功能区总体精度为83.34%,可为济南市功能区空间规划提供新的思路。 Based on POI data and road network data,taking the central urban area of Jinan as the research area and the blocks as the research unit,we used ArcGIS spatial analysis tools to quantitatively identify the functional areas of central urban area of Jinan,and calculated the Kappa coefficient to verify the accuracy.Then,we compared the identification results with Urban Overall Planning of Jinan City,and proposed the optimization countermeasures for functional areas.The research results show that①urban functional areas present multi-center distribution from west to east.②A single functional area is characterized by a circle distribution.③The overall accuracy of functional area calculated by confusion matrix is 83.34%,which can provide a new idea for the spatial planning of functional areas in Jinan City.
作者 郑国强 乔宇昊 孙思民 ZHENG Guoqiang;QIAO Yuhao;SUN Simin(School of Surveying and Geo-informatics,Shandong Jianzhu University,Jinan 250101,China)
出处 《地理空间信息》 2023年第10期58-61,共4页 Geospatial Information
基金 2018年国家自然科学基金青年基金资助项目(51808320) 山东省研究生创新计划(SDYY6031)。
关键词 城市功能区 POI兴趣点 空间分析 定量识别 济南市 urban functional area POI spatial analysis quantitative identification Jinan City
  • 相关文献

参考文献7

二级参考文献59

  • 1湛东升,张文忠,张娟锋,李佳洺,谌丽,党云晓.北京市公共服务设施集聚中心识别分析[J].地理研究,2020,0(3):554-569. 被引量:30
  • 2Ankerst M, Breunig M M, Kriegel H P and Sander J. 1999. OPTICS: ordering points to identify the clustering structure.ACM SIGMOD Record, 28(2): 49-60 DOI: 10.1145/304181.304187.
  • 3Caduff D and Timpf S. 2008. On the assessment of landmark salience for human navigation. Cognitive Processing, 9(4): 249-267 DOI: 10.1007/s10339-007-0199-2.
  • 4Daniel M P and Denis M. 1998. Spatial descriptions as navigational aids: a cognitive analysis of route directions. Kognitionswissenschaft, 7(1): 45-52 DOI: 10.1007/s001970050050.
  • 5Dong P L. 2008. Generating and updating multiplicatively weighted Voronoi diagrams for point, line and polygon features in GIS. Computers and Geosciences, 34(4): 411-421 DOI: }0.1016/j.cageo.2007.04.005.
  • 6Elias B. 2003. Extracting landmarks with data mining methods. Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science. Vol. 2825 of Lecture Notes in Computer Science. Berlin: Springer-Verlag.
  • 7ISO. 2004. Intelligent Transport Systems-Geographic Data Files (GDF)-Overall Data Specifications. ISO 14825.
  • 8Kettani D and Moulin B. 1999. A spatial model based on the notions of spatial conceptual map and of object's influence areas. Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science. Vol. 1661 of Lecture Notes in Computer Science. Berlin: Springer-Verlag.
  • 9Klippel A, Richter K F and Hansen S. 2009. Cognitively ergonomic route directions. Handbook of Research on Geoinforrnatics. IGI: Information Science Reference.
  • 10Klippel A and Winter S. 2005. Structural salience of landmarks for route directions. Spatial Information Theory: Cognitive and Computational Foundations of Geographic Information Science. Vol. 3693 of Lecture Notes in Computer Science. Berlin: Springer-Verlag.

共引文献442

同被引文献55

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部