摘要
考虑具有一般投资收益过程的二维带扰动保险风险模型,假定保险公司盈余的投资收益过程由右连左极随机过程刻画,且两种索赔额与索赔到达时间间隔服从Sarmanov相依结构.当索赔额分布属于正则变化尾分布族时,得到有限时间破产概率的渐近公式.当描述投资收益过程的右连左极过程分别取Lévy过程,Vasicek利率模型,Cox-Ingersoll-Ross(CIR)利率模型,Heston模型时,得到相应投资收益情形下破产概率的渐近公式.
The paper considers a bi-dimensional perturbed insurance risk model with general investment returns.Assume that the investment return is described by a càdlàg process,and two classes of claims and the inter-arrival times follow the Sarmanov dependence structure.When the claim-size distribution has a regularly varying tail,the paper derives the asymptotic formula of the finite-time ruin probability.When the càdlàg process describing investment returns is chosen as the Lévy process,Vasicek interest rate model,Cox-Ingersoll-Ross(CIR)interest rate model,or Heston model,the paper derives the asymptotic estimates for ruin probabilities under the corresponding investment returns.
作者
程铭
王定成
Cheng Ming;Wang Dingcheng(School of Mathematical Sciences,University of Electronic Science and Technology of China,Chengdu 611731)
出处
《数学物理学报(A辑)》
CSCD
北大核心
2023年第5期1529-1558,共30页
Acta Mathematica Scientia
基金
国家自然科学基金(71271042)
云南师范大学博士科研启动项目(2020ZB014)
云南省基础研究青年项目(202201AU070051)。
关键词
风险模型
投资收益
时间相依
破产概率
Risk model
Investment return
Time-dependence
Ruin probability