期刊文献+

NOMA-VLC系统中最大化总和速率功率分配方法

A maximum summation-rate power allocation method in NOMA-VLC system
下载PDF
导出
摘要 非正交多址接入(Non-Orthogonal Multiple Access,NOMA)被认为是提高无线通信系统频谱效率的一种很有前途的技术。文中将NOMA技术应用于可见光通信(Visible Light Communication,VLC)中,提出了一种基于深度Q网络(Deep Q Network,DQN)强化学习算法的功率分配方案来解决可见光通信系统最大化总和速率优化问题,该方案充分考虑了用户的信道条件,能够提升系统总和速率,可为VLC系统的功率分配问题提供新的思路。仿真结果表明,所提算法比Q学习功率分配算法、增益比功率分配算法、随机功率分配算法拥有更高的总和速率,在用户数小于11的范围内,总和速率平均分别提升了6.28%、12.20%、51.36%。 Non-Orthogonal Multiple Access(NOMA)is considered as a promising technology to improve the spectrum efficiency of wireless communication systems.This paper applies NOMA technology to Visible Light Communication(VLC),and proposes a power allocation scheme based on Deep Q Network(DQN)reinforcement learning algorithm to solve the problem of maximum summation-rate optimization of visible light communication system,which fully considers the channel conditions of users,can improve system performance and provide a new idea for power allocation of VLC system.The simulation results show that the proposed algorithm has a higher summation rate than Q learning power allocation algorithm,gain ratio power allocation algorithm,and random power allocation algorithm,in the range of users less than 11,and the summation rate of the proposed algorithm is increased by 6.28%,12.20%,51.36%,respectively.
作者 王祯旺 汤璇 魏宪 郑建漳 李致锋 谢宇芳 WANG Zhen-wang;TANG Xuan;WEI Xian;ZHENG Jian-zhang;LI Zhi-feng;XIE Yu-fang(College of Electrical Engineering and Automation,Fuzhou University,Fuzhou 350108,China;Quanzhou Institute of Equipment Manufacturing,Fujian Institute of Research on the Structure of Matter,Chinese Academy of Sciences,Quanzhou 362000,Fujian Province,China;Fujian Science&Technology Innovation Laboratory for Optoelectronic Information of China,Fuzhou 350108,China)
出处 《信息技术》 2023年第9期19-25,32,共8页 Information Technology
基金 福建省中科院STS计划配套项目(2020T3026) 泉州市科技计划产学研项目(2020C069) 泉州科技计划高新工业项目(2020G18) 中国福建光电信息科学与技术创新实验室主任基金项目(2021ZR136)。
关键词 非正交多址 功率分配 强化学习 深度Q网络 Non-Orthogonal Multiple Access power allocation reinforcement learning Deep Q Network
  • 相关文献

参考文献5

二级参考文献19

共引文献97

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部