期刊文献+

基于改进平滑L0算法的图像重构 被引量:1

Image reconstruction based on improved Smoothing L0 algorithm
下载PDF
导出
摘要 零范数平滑算法(SL0算法)中采用的最速下降法存在“锯齿现象”,在迭代后期步长减小、收敛速度慢,针对此问题文中提出一种改进SL0算法的压缩感知重构算法。该算法首先采用优化的高斯函数作为平滑函数提高重构精度,然后引入拟牛顿法以提高收敛速度。在对图像的重构实验中,通过不同算法对图像的重构误差、峰值信噪比、迭代时间等参数之间的对比结果表明,相比较标准的SL0算法和其他同类算法,改进的ONSL0算法在重构精度和收敛速度方面均有所提高,也证明了该算法的可行性及有效性。 In the Smoothing L0 algorithm(SL0 algorithm),the steepest descent method has“sawtooth phenomenon”.In the late iteration stage,the step size decreases and the convergence speed is slow.In order to solve this problem,an improved SL0 algorithm for compressed sensing reconstruction is proposed in this paper.The algorithm first uses the optimized Gauss function as a smoothing function to improve the reconstruction precision,and then the quasi Newton method is introduced to improve the convergence speed.In the experiment of image reconstruction,through comparing parameters about image reconstruction error,peak signal-to-noise ratio and the iteration time in different algorithms.The results show that compared with the standard SL0 algorithm and other algorithms,the improved ONSL0 algorithm improves the reconstruction precision and speed of convergence in the reconstruction,and the effectiveness and feasibility of the algorithm are proved.
作者 赵东波 李辉 ZHAO Dong-bo;LI Hui(School of Electronic Information,Xi’an Aeronautical University,Xi’an 710077,China;School of Electronic Information,Northwestern Polytechnical University,Xi’an 710129,China)
出处 《信息技术》 2023年第9期103-107,113,共6页 Information Technology
关键词 压缩感知 稀疏重构 零范数平滑算法 高斯函数 拟牛顿法 Compressed Sensing(CS) sparse reconstruction SL0 algorithm gaussian function quasi Newton method
  • 相关文献

参考文献7

二级参考文献56

  • 1陈宝林.最优化理论与算法[M].2版.北京:清华大学出版社,2007:281-328.
  • 2Candès E J,Wakin M B.An introduction to compressivesampling[J].IEEE Signal Processing Magazine,2008,25(2):21 30
  • 3Baraniuk R G.Compressive sensing[J].IEEE SignalProcessing Magazine,2007,24(4):118 121
  • 4Candès E J,Romberg J K,Tao T.Stable signal recoveryfrom incomplete and inaccurate measurements[J].Communications on Pure and Applied Mathematics,2006,59(8):1207 1223
  • 5Blumensath T,Davies M E.Gradient pursuits[J].IEEETransactions on Signal Processing,2008,56(6):2370 2382
  • 6Dai W,Milenkovic O.Subspace pursuit for compressivesensing signal reconstruction[J].IEEE Transactions onInformation Theory,2009,55(5):2230 2249
  • 7Mallat S G,Zhang Z F.Matching pursuits withtime-frequency dictionaries[J].IEEE Transactions on SignalProcessing,1993,41(12):3397 3415
  • 8Tropp J A,Gilbert A C.Signal recovery from randommeasurements via orthogonal matching pursuit[J].IEEETransactions on Information Theory,2007,53(12):46554666
  • 9Needell D,Vershynin R.Uniform uncertainty principle andsignal recovery via regularized orthogonal matching pursuit[J].Foundations of Computational Mathematics,2009,9(3):317 334
  • 10Figueiredo M A T,Nowak R D,Wright S J.Gradientprojection for sparse reconstruction:application to compressedsensing and other inverse problems[J].IEEE Journal ofSelected Topics in Signal Processing,2007,1(4):586 597

共引文献48

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部