期刊文献+

基于机器学习的指标协同自适应推荐算法

Adaptive recommendation algorithm for index collaboration based on machine learning
下载PDF
导出
摘要 为解决电力通信指标规划复杂且难以精确预测用户所需内容等问题,通过度量用户的选择频次、重要专家评分以及指标系统的使用时长,将语义内容融入到协同过滤中,并采用机器学习进行指标衍生,实现基于机器学习指标衍生的自适应关键内容推荐。仿真表明,采用机器学习的自适应推荐算法能够有效预测用户所需内容,算法推荐准确性可以达到90%以上。 To address the current problems of complex planning of power communication index and difficulty in accurately predicting the contents required by users,the semantic information is incorporated into the collaborative filtering by measuring the selection frequency of users,important expert ratings and the usage duration of the indicator system.And the machine learning is used for indicator derivation to achieve adaptive critical content recommendation based on machine learning indicator derivation.The simulation shows that the adaptive recommendation algorithm based on machine learning can effectively predict the content required by users,and the accuracy of the algorithm recommendation can reach more than 90%.
作者 李莉 聂文海 王浩楠 吴润泽 LI Li;NIE Wen-hai;WANG Hao-nan;WU Run-ze(Institute of Economics and Technology,State Grid Jibei Electric Power Company Limited,Beijing 100055,China;Institute of Electrical and Electronic Engineering,North China Electric Power University,Beijing 102206,China)
出处 《信息技术》 2023年第9期119-124,共6页 Information Technology
关键词 自适应推荐 指标融合 协同过滤 机器学习 指标衍生 adaptive recommendation index fusion collaborative filtering machine learning index derivation
  • 相关文献

参考文献4

二级参考文献29

  • 1罗奇,余英,赵呈领,曹艳.自适应推荐算法在电子超市个性化服务系统中的应用研究[J].通信学报,2006,27(11):183-186. 被引量:12
  • 2吴颜,沈洁,顾天竺,陈晓红,李慧,张舒.协同过滤推荐系统中数据稀疏问题的解决[J].计算机应用研究,2007,24(6):94-97. 被引量:51
  • 3Luhn H P. A business intelligence system[J]. IBM Journal of Research and Development, 1958,2(4) :314 - 319.
  • 4Edward M Housman. Survey of current systems for selective dissemination of information. Technical Report SIG/SDI [ R]. American Society for Information Science Special Interest Group on SDI, Washington DC, June1969.
  • 5Peter J. Denning. Electronic junk [ J ]. Communications of the ACM, 1982,25(3) : 163 - 165.
  • 6Thomas W Malone, Kenneth R Grant, Franklyn A Turbak, et al. Intelligent information sharing systems [ J ]. Communications Of the ACM, 1987,28(6) :390 - 402.
  • 7Avi Arampatzis, Andre van Hameren The Score-Distributional Threshold Optimization for Adaptive Binary Classification Tasks [ C]//SIGIR'01, New Orleans, louisiana, USA,2001:285 - 293.
  • 8Arampatzis A,Beney J,Koster C H A,et al. KUN on the TREC9 Filtering Track : lncrementality, decay, and threshold optimization for adaptive filtering systems[C]. The ninth Text Retrieval Conferenee, Gaithersburg, MD, USA, November9-12,2000.
  • 9ITU Internet Reports 2005:The Internet of Things[R].2005.
  • 10王庆,邢怀滨.物联网带来的伦理挑战[C].全国科技与社会(STS)学术年会(2007)论文集,2007:348-350.

共引文献182

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部