摘要
脑卒中病灶自动分割方法成为近几年的研究热点。为了全面研究用于MRI脑卒中病灶分割的深度学习方法的现状,针对脑卒中治疗的临床问题,进一步阐述了基于深度学习的病灶分割的研究背景及其挑战性,并介绍脑卒中病灶分割的常用公共数据集(ISLES和ATLAS)。然后,重点阐述了基于深度学习的脑卒中病灶分割方法的创新与进展,从网络结构、训练策略、损失函数这3个角度对研究进展进行了归纳,并且对比了各种方法的优缺点。最后,讨论了该研究存在的困难和挑战以及未来的发展趋势。
Automatic stroke lesion segmentation has become a research hotspot in recent years.In order to comprehensively review current progress of deep learning-based MRI stroke lesion segmentation methods,start with the clinical problems of stroke treatment,we further elaborate the research background and challenges of deep learning-based lesion segmentation,and introduce common public datasets(ISLES and ATLAS)for stroke lesion segmentation.Then,we focus on the innovation and progress of deep learning-based stroke lesion segmentation methods,and summarize the research progress from three perspectives:network structure,training strategy,and loss function,and compare the advantages and disadvantages of various methods.Finally,we discusse the difficulties and challenges in this research and its future development trend.
作者
余唯一
陈涛
张军平
单洪明
YU Weiyi;CHEN Tao;ZHANG Junping;SHAN Hongming(Institute of Science and Technology for Brain-Inspired Intelligence,Fudan University,Shanghai 200433,China;School of Computer Science,Fudan University,Shanghai 200433,China)
出处
《智能科学与技术学报》
CSCD
2023年第3期293-312,共20页
Chinese Journal of Intelligent Science and Technology
基金
国家自然科学基金项目(No.62101136,No.62176059)
上海市自然科学基金项目(No.21ZR1403600)
上海市科技计划项目(No.20JC1419500)。