摘要
针对漂浮物检测中小尺度目标和域转移问题,提出一种基于持续无监督域适应策略的漂浮物检测方法。该方法通过删除低分辨率特征图,增强高分辨率特征图,提升小尺度漂浮物的特征提取能力。同时,该方法整合无监督域适应、缓冲区和样本重放,降低应用场景中不断变化的域转移差异。并将改进检测网络与持续无监督域适应相结合,提升模型检测精度和泛化能力。通过在漂浮物数据集上实验验证,对比现有方法,该方法的检测精度达到82.2%,检测速度达到68.5 f/s,浮点数的算量减少到33亿,模型大小达到25.3 MB,扩展了目标检测在水面视觉中的应用。
For small-scale targets and domain transfer problems,a method based on a continuous unsupervised domain adaptation strategy is proposed.By removing low-resolution feature maps and enhancing high-resolution feature maps,the method improves the ability of small-scale floaters to extract features.This study proposes a continuous unsupervised domain adaptation method that integrates unsupervised domain adaptation,buffering,and sample replay to reduce the constantly varying domain transfer variance in application scenarios.Meanwhile,this study combines the improved detection network with continual unsupervised domain adaption to improve model detection precision and generalization capabilities.Through the experimental verification on the data set of the floating targets,compared with the mainstream methods,the detection accuracy of the proposed method reaches 82.2%,the detection speed can reach 68.5 f/s,the computation amount of floating-point numbers reaches 3.3 billion,and the size of the model reaches 25.3 MB.This study extends the application of object detection in water surface vision.
作者
陈任飞
彭勇
李忠文
CHEN Renfei;PENG Yong;LI Zhongwen(Faculty of Infrastructure Engineering,Dalian University of Technology,Dalian 116024,China;Institute of Systems Engineering,Dalian University of Technology,Dalian 116024,China)
出处
《系统工程与电子技术》
EI
CSCD
北大核心
2023年第11期3391-3401,共11页
Systems Engineering and Electronics
基金
国家自然科学基金(71874021
71974024)
大连理工大学人工智能研究院项目(05090001)
国家重点研发计划课题(2022YFC3202803)资助课题
关键词
深度学习
水面漂浮物
目标检测
无监督域适应
持续学习
deep learning
floating materials
object detection
unsupervised domain adaptation
continual learning