期刊文献+

三种反应器在二氧化碳加氢制酰胺中的应用进展

Progress in application of three reactors for carbon dioxide hydrogenation to amide production
下载PDF
导出
摘要 二氧化碳(CO_(2))是主要的温室气体之一,其过度排放对全球气候和环境造成了严重影响。N,N-二甲基甲酰胺(DMF)是一种良好的溶剂以及重要的化工中间体,目前年产量可达百万吨级。利用催化技术将CO_(2)与二甲胺(NH(CH_(3))_(2))反应制备成高附加值的DMF可以实现CO_(2)减排,对社会的可持续发展具有重要意义。反应器在实现上述反应的高效催化过程中起着重要的作用。介绍了在CO_(2)催化加氢制DMF中常用的三种反应器(高压反应釜、固定床反应器与浆态床反应器)及其目前的应用情况。高压反应釜由于具有不锈钢外壳以及耐高温、抗腐蚀内胆的结构设计,可适用于含有胺类原料以及需要高压条件的CO_(2)加氢制酰胺反应;固定床反应器可以连续化反应,但易出现热点导致催化剂烧结,且传质不具有优势;浆态床反应器既拥有高压反应釜的高传质、传热能力,也能长时间连续反应。由于高压反应釜操作简单、订购成本较低以及应用范围广泛等特点,目前CO_(2)加氢制备DMF的反应器依然以高压反应釜为主。随着工业化逐渐提上日程,使用连续化的评价装置(固定床反应器和浆态床反应器)可能会是未来的发展趋势。 The excessive release of carbon dioxide(CO_(2)),a major greenhouse gas,has a severe impact on the environment and the world's climate.As a highly effective solvent and a significant chemical intermediate,N,N-dimethylformamide(DMF)is produced annually in quantities of up to one million tons.The utilization of catalytic technology in the synthesis of high value-added DMF from CO_(2) with dimethylamine(NH(CH_(3))_(2))offers a promising approach to reducing CO_(2) emissions,thereby contributing significantly to the sustainable development of society.Achieving efficient catalytic processes for the aforementioned reactions highly relies on the utilization of reactors.Three commonly used reactors(high-pressure reactors,fixed bed reactors,and slurry bed reactors)in the catalytic hydrogenation of CO_(2) to DMF were introduced,as well as their current application status.With its stainless-steel casing and inner liner that can withstand high temperatures and corrosion,the high-pressure reactor is suitable for the hydrogenation of CO_(2) to amide reactions containing amine raw materials,which requiring high-pressure conditions.The fixed-bed reactor can facilitate continuous reactions,but it is prone to hot spots leading to catalyst sintering,and it has no advantages in mass transfer.The slurry bed reactor boasts exceptional mass and heat transfer capabilities,akin to those of a high-pressure reactor,while also enabling continuous reaction over extended periods of time.High-pressure reactors remain the primary choice for the production of DMF from CO_(2) due to their ease of use,low cost,and versatility in application.As industrialization becomes increasingly relevant,the prospect of employing continuous evaluation devices,such as fixed bed reactors and slurry bed reactors,may emerge as the prevailing trend for future development.
作者 王宇轩 张寰 杨俊明 张霖 黄采妮 关桂玲 吴剑峰 WANG Yuxuan;ZHANG Huan;YANG Junming;ZHANG Lin;HUANG Caini;GUAN Guiling;WU Jianfeng(State Key Laboratory of Applied Organic Chemistry,Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province,College of Chemistry and Chemical Engineering,Lanzhou University,Lanzhou 730000,Gansu,China;PetroChina Lanzhou Petrochemical Company,Lanzhou 730060,Gansu,China;State Key Laboratory for Oxo Synthesis and Selective Oxidation,Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences,Lanzhou 730000,Gansu,China)
出处 《低碳化学与化工》 CAS 北大核心 2023年第5期29-37,共9页 Low-Carbon Chemistry and Chemical Engineering
基金 国家自然基金青年基金(21903041,21803027) 中央高校基本科研业务费-优秀青年支持计划(lzujbky-2021-ey11) 中国石油天然气股份有限公司企业项目(LZSH-2022-JS-75)。
关键词 CO_(2)催化加氢 DMF 高压反应釜 固定床反应器 浆态床反应器 catalytic hydrogenation of CO_(2) DMF high-pressure reactor fixed-bed reactor slurry bed reactor
  • 相关文献

参考文献3

二级参考文献46

  • 1黎汉生,任飞,王金福.浆态床一步法二甲醚产业化技术开发研究进展[J].化工进展,2004,23(9):921-924. 被引量:17
  • 2何广湘,杨索和,靳海波.鼓泡床反应器内流动与传质行为的研究进展[J].化学工业与工程,2007,24(1):75-80. 被引量:13
  • 3胡立舜,俞志楠,沈军杰,王兴军,于广锁.循环浆态床气体停留时间分布的研究[J].化学反应工程与工艺,2006,22(6):519-525. 被引量:1
  • 4[1]Fan L S,Matsuura A,Chem S H.Hydrodynamic characteristics of a gas-liquid-solid fluidized bed containing a binary mixture of particles[J].AIChE J.,1985,31:1801-1810.
  • 5[2]Zhang J P,Grace J R,Epstein N,et al.Flow regime identification in gas-liquid flow and three-phase fluidized beds[J].Chem.Eng.Sci.,1997,52(21-22):3979-3992.
  • 6[3]Badgujar M N,Deimling A,Morsi B I,et al.Solids distribution in a batch bubble column[J].Chem.Eng.Commun.,1986,48:127-153.
  • 7[4]Soong Y,Harke F W,Gamwo I K,et al.Hydrodynamic study in a slurry-bubble-column reactor[J].Catalysis Today,1997,5:427-434.
  • 8[5]Behkish A,Lemoine R,Sehabiague L,et al.Gas holdup and bubble size behavior in a large-scale slurry bubble column reactor operating with an organic liquid under elevated pressures and temperatures[J].Chem.Eng.J,,2007,128:69-84.
  • 9[6]Krishna R,Urseanu M I,De Swart J W A,et al.Gas hold-up in bubble columns:Operation with concentrated slurries versus high viscosity liquid[J].Can.J.Chem.Eng.,2000,78(3):442-448.
  • 10[7]Wilkinson P M,Spek A P,Van Dierendonck L L.Design parameters estimation for scale-up of high-pressure bubble columns[J].AIChE J.,1992,38:544-554.

共引文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部