期刊文献+

Integration Operators on Spaces of Dirichlet Series

原文传递
导出
摘要 We first study the Volterra operator V acting on spaces of Dirichlet series.We prove that V is bounded on the Hardy space H_(0)^(p)for any 0<p≤∞,and is compact on H_(0)^(p)for 1<p≤∞.Furthermore,we show that V is cyclic but not supercyclic on H_(0)^(p)for any 0<p<∞.Corresponding results are also given for V acting on Bergman spaces H_(w,0)^(p).We then study the Volterra type integration operators T_(g).We prove that if T_(g)is bounded on the Hardy space H_(p),then it is bounded on the Bergman space H_(w)^(p).
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2023年第10期1919-1938,共20页 数学学报(英文版)
基金 partially supported by the National Natural Science Foundation(Grant No.12171373)of China supported by the Fundamental Research Funds for the Central Universities(Grant No.GK202207018)of China。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部