摘要
文章研究F_(p^(m))上码长是4p^(s)重根循环码的对偶包含性;基于重根循环码的代数结构,给出F_(p^(m))上码长是4p^(s)重根循环码是对偶包含码的充要条件,并确定了它们的最小距离;基于Steane扩展构造,构造了几类参数较好的非二元量子码。
In this paper,the repeated-root cyclic codes of length 4p^(s) over F_(p^(m)) which contain their dual codes are studied.Based on algebraic structure of the repeated-root cyclic codes,a necessary and sufficient condition for the repeated-root cyclic codes of length 4p^(s) over F_(p^(m)) which contain their dual codes is given,and their minimum distance is determined.Based on Steane’s enlargement construction,several kinds of non-binary quantum codes with better parameters are constructed.
作者
汪余婷
刘丽
WANG Yuting;LIU Li(School of Mathematics,Hefei University of Technology,Hefei 230601,China)
出处
《合肥工业大学学报(自然科学版)》
CAS
北大核心
2023年第10期1430-1434,共5页
Journal of Hefei University of Technology:Natural Science
基金
国家自然科学基金资助项目(11871187)。
关键词
量子码
对偶码
汉明距离
循环码
Steane扩展构造
quantum codes
dual codes
Hamming distance
cyclic codes
Steane’s enlargement construction