期刊文献+

基于HOG特征的脑电地形图分类算法研究 被引量:1

BEAM Classification Algorithm Based on Histogram of Oriented Gradient Features
下载PDF
导出
摘要 脑电地形图(Brain Electrical Activity Mapping,BEAM),是一种先进的研究脑功能和临床诊断的重要手段,既能进行病理诊断又可进行功能诊断,具有较高的敏感性。通过BEAM判断人在不同高低负荷下的疲劳情况并进行有效分类,能最大程度避免高危从业人员的危险发生。目前,大多数脑力负荷分类方法只是简单地利用脑电信号的四种频段特征进行分类,但分类效果并不理想。在此基础上,提出将脑电信号可视化分析,构建脑电地形图,并将方向梯度直方图(Histogram of Oriented Gradient,HOG)特征应用到BEAM分类中。BEAM是根据各频段功率谱密度值用不同颜色表示的球面头皮展成的平面图形,所以针对BEAM的分类研究是基于图像浅层特征的,而HOG正是图像处理中一种简单有效的浅层特征描述符。在BEAM中,HOG能有效地提取各脑功能区的边缘结构特征,并且能提取到地形图表象和形状的方向分布。首先将采集到的脑电信号进行预处理后,选择三频段脑电特征构建BEAM,进行HOG特征提取及分类任务,并与其他算法进行对比。得到的脑电地形图分类结果表明,提取HOG特征的BEAM分类精度最高,明显好于其他研究算法。 At present,most of the mental workload classification methods simply use the four frequency band features of EEG signals to classify,but the classification effect is not ideal.On this basis,this paper proposes to visually analyze EEG signals,construct BEAM,and apply the Histogram of Oriented Gradient(HOG)to the BEAM classification.BEAM is a planar graph formed by spherical scalps represented by different colors according to the power spectral density values of each frequency band.Therefore,the classification research of BEAM is based on the shallow features of images,and the HOG is a simple and effective shallow feature descriptor in image processing.In the BEAM,HOG can effectively extract the edge structure features of each brain functional area,and can extract the directional distribution of the image and shape of the topographic map.
出处 《工业控制计算机》 2023年第10期71-72,74,共3页 Industrial Control Computer
关键词 脑力负荷分类 脑电地形图 方向梯度直方图 脑电 classification of mental workload BEAM HOG EEG
  • 相关文献

参考文献7

二级参考文献36

  • 1鲁在清.国际标准脑电图术语[J].现代电生理学杂志,2004,11(3):158-164. 被引量:6
  • 2刘昌.心算加工的认知神经科学研究[J].心理科学,2006,29(1):30-33. 被引量:15
  • 3SAROJ K L, CRAIG A. Physiological indicators of driver fatigue[ C ]. Road Safety Research, Policing and Educa- tion Conference,2000 ( 11 ) :489-494.
  • 4JI Q, ZHU Z, LAN P. Real-time nonintrusive monitoring and prediction of driver fatigue [ J ]. IEEE Transactions on Vehicular Technology ,2004,53 ( 4 ) : 1052-1068.
  • 5LAL S K,CRAIG A. A critical review of the psychophysi- ology of driver fatigue [ J ]. Biological psychology, 2001, 55(3) :173-194.
  • 6RADUNOVIC D P. Wavelets:From math to practice [ M ]. Springer, 2009.
  • 7WU T,YAN G ZH,YANG B H,et al. EEG feature extrac- tion based on wavelet packet decomposition for brain com- puter interface[ J ]. Measurement ,2008,41 ( 6 ) :618-625. Y.
  • 8ANG G, LIN Y, BHA3TACHARYA P. A driver fatigue rec- ognition model using fusion of multiple features [ C ]. Pro- ceedings of IEEE International Conference on System, Man and Cybernetics,Waikoloa, HI, United States ,2005 (2) : 1777- 1784.
  • 9RAMOSER H, MULI3~R-GERKING J, PFURTSCHELIA~R (,. Optimal spatial filtering of single trial EEG during inkag- ined hand movement [ J ]. IEEE Transactions on Rehabilita- tion Engineering,2000,8(4) :441-446.
  • 10KRAJEWSKI J, SOMMER D, TRUTSCHEL U, et al. Steering wheel behavior based estimation of fatigue [ C ]. Proceedings of the 5th International Driving Symposium on Human Factors in Driver Assessment, Training and Vehicle Design ,2009 : 118-124.

共引文献199

同被引文献8

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部