摘要
基于信道状态信息(CSI)数据的WiFi指纹可用于室内定位。与信号强度值(RSSI)数据相比,CSI具有更高的数据信息粒度,并且可以在多个子载波上获得。当使用CSI数据进行室内定位时,相对于RSSI可以获得更好的结果。然而,无论使用RSSI还是CSI信号,在室内定位部署期间的一段时间后,室内环境通常会发生变化,并且基于测试数据的指纹数据库通常会恶化甚至失效。该文提出使用迁移学习算法来建立用于室内定位的指纹数据库。迁移学习的优势在于,可以使用较少的数据来获得更好的迁移训练结果。该文使用迁移学习来迁移指纹数据库的预测,延长指纹数据库的生命周期,并提高室内定位的鲁棒性。经过实验,1周后室内定位准确率保持在98%,两周后保持在97%。在相同成本下,该模型的生命周期和定位精度高于长短期记忆网络(LSTM)、卷积神经网络(CNN)、支持向量机(SVM)、深度神经网络(DNN)和其他定位系统。
The WiFi fingerprint based on Channel State Information(CSI)data can be used for indoor positioning.Compared to Received Signal Strength Indicator(RSSI)data,CSI has a higher granularity of data information and can be obtained over multiple subcarriers.Better results can be achieved when using CSI data for indoor localization.However,regardless of whether RSSI or CSI signals are used,the indoor environment often changes after a period of time during the deployment of indoor localization,and the fingerprint database based on the test data often deteriorates or even becomes invalid.In this paper,using a transfer learning algorithm to establish a fingerprint database for indoor positioning is proposed.The advantage of transfer learning is that it can use less data to obtain better transfer training results.Transfer learning is used to migrate the prediction of fingerprint database,the life cycle of fingerprint database is prolonged,and robustness in indoor positioning is improved.The indoor positioning accuracy is maintained at 98%after one week and 97%after two weeks.At the same cost,the life cycle and positioning accuracy of the proposed model are higher than Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN),Support Vector Machine(SVM),Deep Neural Networks(DNN),and other positioning systems.
作者
李玉柏
孙迅
LI Yubai;SUN Xun(School of Information and Communication Engineering,University of Electronic Science and Technology,Chengdu 611731,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2023年第10期3657-3666,共10页
Journal of Electronics & Information Technology
基金
四川省重点研发计划(23ZDYF0198)。
关键词
无线传感器网络
室内定位
指纹定位
信道状态信息
迁移学习
Wireless sensor networks
Indoor localization
Fingerprint localization
Channel State Information(CSI)
Transfer learning