期刊文献+

基于事件触发的通信有效联邦学习算法

Communication-Efficient Federated Learning Algorithm Based on Event Triggering
下载PDF
导出
摘要 由于实际网络的带宽是有限的,因此客户端和中心服务器之间的通信成为联邦学习的一个主要瓶颈。为了减小通信开销,该文引入事件触发机制,提出一个通信有效的联邦学习算法(FedET)。首先,客户端利用事件触发机制判断是否需要向中心服务器发送当前模型。然后,中心服务器基于收到的信息进行模型聚合。具体地,在每个通信轮次,客户端完成本地模型训练之后,将模型更新和触发阈值进行比较,若触发通信,则将信息进行压缩后发送给中心服务器。进一步地,分别对满足凸的、PL(Polyak-Łojasiewicz)条件的和非凸的光滑目标函数,该文分析了所提算法的收敛性并给出了证明。最后,在两个标准的数据集上进行仿真实验。实验结果验证了所提算法的可行性和有效性。 Due to the limited actual network bandwidth,the communication between clients and the central server is a main bottleneck of federated learning.To reduce the communication cost,a communication-efficient Federated learning algorithm is proposed by introducing the Event Triggered mechanism(FedET).Firstly,the clients determine whether to send the current model to the central server through using the event-triggered mechanism.Then,the central server aggregates models based on the information received.In particular,at each communication round,after finishing the local model training,the clients compare the model update with the trigger threshold,and if the communication is triggered,the transmitted information is compressed and sent to the central server.Furthermore,for smooth objective functions which satisfy convex,PL(Polyak-Łojasiewicz)condition and non-convex,respectively,this paper analyzes the convergence of the proposed algorithm and presents the proof.Finally,simulation experiments are implemented on two standard datasets.Simulation results verify the feasibility and effectiveness of the proposed algorithm.
作者 高慧敏 杨磊 朱军龙 张明川 吴庆涛 GAO Huimin;YANG Lei;ZHU Junlong;ZHANG Mingchuan;WU Qingtao(School of Information Engineering,Henan University of Science and Technology,Luoyang 471023,China;Information Technology Management Center,CITIC Heavy Industries Corporation Limited,Luoyang 471003,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2023年第10期3710-3718,共9页 Journal of Electronics & Information Technology
基金 国家自然科学基金(61871430,61976243) 中原科技创新领军人才(214200510012,224200510004) 河南省高校科技创新人才(22HASTIT014)。
关键词 联邦学习 通信有效 事件触发 压缩 收敛性 Federated learning Communication-efficient Event triggering Compression Convergence
  • 相关文献

参考文献2

二级参考文献19

  • 1Do K D. Formation control of multiple elliptical agents with limited sensing ranges[J].{H}AUTOMATICA,2012,(7):1330-1338.
  • 2Manathara J G,Ghose D. Rendezvous of multiple UAVs with collision avoidance using consensus[J].{H}JOURNAL OF AEROSPACE ENGINEERING,2012,(4):480-489.
  • 3Zhou Z,Fang H,Hong Y. Distributed estimation for moving target based on state-consensus strategy[J].{H}IEEE Transactions on Automatic Control,2013,(8):2096-2101.
  • 4Boyd S,Ghosh A,Prabhakar B. Randomized gossip algorithms[J].{H}IEEE Transactions on Information Theory,2006,(6):2508-2530.
  • 5Dimakis A G,Sarwate A D,Wainwright M J. Geographic gossip:efficient averaging for sensor networks[J].{H}IEEE Transactions on Signal Processing,2008,(3):1205-1216.
  • 6Tuncer C A,Mehmet E Y,Anand D S. Broadcast gossip algorithms for consensus[J].{H}IEEE Transactions on Signal Processing,2009,(7):2748-2761.
  • 7Ustebay D,Oreshkin B N,Coates M J. Greedy gossip with eavesdropping[J].{H}IEEE Transactions on Signal Processing,2010,(7):3765-3776.
  • 8Kar S,Moura J M F. Gossip and distributed Kalman filtering:weak consensus under weak delectability[J].{H}IEEE Transactions on Signal Processing,2011,(4):1766-1784.
  • 9Cai K,Ishii H. Average consensus on general strongly connected digraphs[J].{H}AUTOMATICA,2012,(11):2750-2761.
  • 10Lavaei J,Murray R M. Quantized consensus by means of gossip algorithm[J].{H}IEEE Transactions on Automatic Control,2012,(1):19-32.

共引文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部