摘要
由于实际网络的带宽是有限的,因此客户端和中心服务器之间的通信成为联邦学习的一个主要瓶颈。为了减小通信开销,该文引入事件触发机制,提出一个通信有效的联邦学习算法(FedET)。首先,客户端利用事件触发机制判断是否需要向中心服务器发送当前模型。然后,中心服务器基于收到的信息进行模型聚合。具体地,在每个通信轮次,客户端完成本地模型训练之后,将模型更新和触发阈值进行比较,若触发通信,则将信息进行压缩后发送给中心服务器。进一步地,分别对满足凸的、PL(Polyak-Łojasiewicz)条件的和非凸的光滑目标函数,该文分析了所提算法的收敛性并给出了证明。最后,在两个标准的数据集上进行仿真实验。实验结果验证了所提算法的可行性和有效性。
Due to the limited actual network bandwidth,the communication between clients and the central server is a main bottleneck of federated learning.To reduce the communication cost,a communication-efficient Federated learning algorithm is proposed by introducing the Event Triggered mechanism(FedET).Firstly,the clients determine whether to send the current model to the central server through using the event-triggered mechanism.Then,the central server aggregates models based on the information received.In particular,at each communication round,after finishing the local model training,the clients compare the model update with the trigger threshold,and if the communication is triggered,the transmitted information is compressed and sent to the central server.Furthermore,for smooth objective functions which satisfy convex,PL(Polyak-Łojasiewicz)condition and non-convex,respectively,this paper analyzes the convergence of the proposed algorithm and presents the proof.Finally,simulation experiments are implemented on two standard datasets.Simulation results verify the feasibility and effectiveness of the proposed algorithm.
作者
高慧敏
杨磊
朱军龙
张明川
吴庆涛
GAO Huimin;YANG Lei;ZHU Junlong;ZHANG Mingchuan;WU Qingtao(School of Information Engineering,Henan University of Science and Technology,Luoyang 471023,China;Information Technology Management Center,CITIC Heavy Industries Corporation Limited,Luoyang 471003,China)
出处
《电子与信息学报》
EI
CSCD
北大核心
2023年第10期3710-3718,共9页
Journal of Electronics & Information Technology
基金
国家自然科学基金(61871430,61976243)
中原科技创新领军人才(214200510012,224200510004)
河南省高校科技创新人才(22HASTIT014)。
关键词
联邦学习
通信有效
事件触发
压缩
收敛性
Federated learning
Communication-efficient
Event triggering
Compression
Convergence