摘要
本文用混合谱数据研究边界条件含谱参数的Sturm-Liouville算子反问题.已知[a0,1]上的势函数q(x),我们证明一组谱的部分特征值唯一确定[0,1]上的势函数q(x).此外,还证明了缺少两个特征值的一组谱也能唯一确定[0,1]上的势函数q(x).
The inverse spectral problems for Sturm-Liouville operators with one boundary condition having the spectral parameter are studied from mixed spectral data in this paper.The authors show that if the potential q(α)on[ao,1]is given a priori,then the potential q(a)on[0,1]can be uniquely determined by parts of one spectrum.In addition,we prove that the potential q(a)on[0,1]can be uniquely determined by one spectrum with two eigenvalues missing.
作者
唐勇
王於平
Yong TANG;Yu Ping WANG(Information and Computational Sciences,College of Science,Nanjing Forestry University,Nanjing 210037,P.R.China;Department of Applied Mathematics,Nanjing Forestry University,Nanjing 210037,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2023年第5期881-888,共8页
Acta Mathematica Sinica:Chinese Series
基金
江苏省大学生创新项目(202110298138H)。
关键词
反问题
S-L算子
参数边界条件
混合谱数据
缺少特征值问题
inverse problem
Sturm-Liouville operator
boundary condition having the spectral parameter
mixed spectral data
missing eigenvalue problem