期刊文献+

Localization of normalized solutions for saturable nonlinear Schr?dinger equations

原文传递
导出
摘要 In this paper,we study the existence and concentration behavior of the semiclassical states with L2-constraints for the following saturable nonlinear Schr?dinger equation:-ε2Δv+Γ(I(x)+v^(2))/(1+I(x)+v^(2))v=λv for x∈R2.For a negatively large coupling constantΓ,we show that there exists a family of normalized positive solutions(i.e.,with the L2-constraint)whenεis small,which concentrate around local maxima of the intensity function I(x)asε→0.We also consider the case where I(x)may tend to-1 at infinity and the existence of multiple solutions.The proof of our results is variational and the novelty of the work lies in the development of a new truncation-type method for the construction of the desired solutions.
出处 《Science China Mathematics》 SCIE CSCD 2023年第11期2495-2522,共28页 中国科学:数学(英文版)
基金 supported by National Natural Science Foundation of China(Grant No.11861053) supported by National Natural Science Foundation of China(Grant No.11831009) supported by National Natural Science Foundation of China(Grant No.11901582)。

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部