期刊文献+

改进的L1/2阈值迭代高分辨率SAR成像算法 被引量:1

Improved L1/2 Threshold Iterative High Resolution SAR Imaging Algorithm
下载PDF
导出
摘要 针对合成孔径雷达(SAR)在稀疏采样条件下方位向分辨率低、易受噪声干扰等问题,提出改进的高分辨率SAR成像算法。该文在现有的L1/2正则化理论及其阈值迭代算法的基础上,改进了其表达式中的梯度算子,提高重构图像的求解精度,降低计算量。然后,在全采样和欠采样条件下,将原有L1/2阈值迭代算法与所提改进L1/2阈值迭代算法,分别结合近似观测模型对SAR回波信号进行成像处理和性能对比。实验结果表明,改进的算法具有更加优越的收敛性能,并且对于SAR图像方位向分辨率有一定的改善。 An improved Synthetic Aperture Radar(SAR)imaging algorithm is proposed to address the issues of low azimuth resolution and noise interference in the sparse sampling condition.Based on the existing L1/2 regularization theory and iterative threshold algorithm,the gradient operator is modified,which can improve the solution accuracy of the reconstructed image and reduce the load of calculation.Then,under full sampling and under-sampling conditions,the original and improved L1/2 iterative threshold algorithm are combined with the approximate observation model to image SAR echo signals and compare their imaging performance.The experimental findings demonstrate that the improved algorithm improves the azimuth resolution of SAR images and has higher convergence performance.
作者 高志奇 孙书辰 黄平平 乞耀龙 徐伟 GAO Zhiqi;SUN Shuchen;HUANG Pingping;QI Yaolong;XU Wei(College of Information Engineering,Inner Mongolia University of Technology,Hohhot 010080,China;Inner Mongolia Key Laboratory of Radar Technology and Application,Hohhot 010051,China)
出处 《雷达学报(中英文)》 EI CSCD 北大核心 2023年第5期1044-1055,共12页 Journal of Radars
基金 国家自然科学基金(61761037,62071258) 内蒙古自治区自然科学基金(2021MS06005,2020ZD18) 内蒙古自治区直属高校基本科研业务费项目(JY20220147)。
关键词 合成孔径雷达 近似观测模型 压缩感知 L1/2正则化理论 Synthetic Aperture Radar(SAR) Approximate observation model Compressed sensing L1/2 regularization theory
  • 相关文献

参考文献11

二级参考文献85

  • 1任百玲,李世勇,孙厚军.基于ROMP的压缩感知算法在雷达成像中的应用[J].微波学报,2012,28(S2):447-450. 被引量:3
  • 2Natarajan B K. Sparse approximate solutions to linear sys- tems. SIAM Journal oll Computing, 1995, 24(2): 227-234.
  • 3Chen S, Donoho D L, Saunders M A. Atomic decomposi- tion by basis pursuit. SIAM Journal on Scientit]c Comput- ing, 1998, 20(1): 33-61.
  • 4Candes E, Wakin M, Boyd S. Enhancing sparsity by reweighted L1 minimization. Journal of Fourier Analysis and Applications, 2008, 14(5): 877--905.
  • 5Chartrand R. Exact reconstructions of sparse signals via nonconvex minimization. IEEE Signal Processing Letters, 2007, 14(I0): 707--710.
  • 6Chartrand R, Staneva V. Restricted isometry properties and nonconvex compressive sensing. Inverse Problems, 2008, 24(3): 1-14.
  • 7Donoho D L. Neighborly polytopes and the sparse solu- tion of underdetermined linear equations [Online], available: http: //www-stat.stanford.edu/ donoho/ Reports/ 2005/ NPaSSULE-01-28-05.pdf, November 8, 2011.
  • 8Donoho D L. High-dimensional centrally symmetric poly- topes with neighborliness proportional to dimension. Dis- crete and Computational Geometry, 2006, 35(4): 617-652.
  • 9Donoho D L, Stodden V. Breakdown point of model selection when the number of variables exceeds the number of observa- tions. In: Proceedings of the International Joint Conference on Neural Networks. Vancouver, USA: IEEE, 2006. 1916- 1921.
  • 10Xu Z B, Zhang H, Wang Y, Chang X Y, Yong L. L1/2 reg- ularization. Science in China Series F: Information Sciences, 2010, 53(6): 1159-1169.

共引文献84

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部