期刊文献+

基于微多普勒信号分离和SqueezeNet的人体身份识别 被引量:1

Human Identity Recognition Based on Micro-Doppler Signal Separation and SqueezeNet
下载PDF
导出
摘要 针对基于雷达传感器的人体身份识别问题,本文提出一种基于微多普勒信号分离和SqueezeNet的人体身份识别方法。首先利用雷达对人体行走的步态进行探测并收集回波数据,回波数据经过预处理得到微多普勒时频谱图;其次用阈值法对时频谱图进行微多普勒信号分离从而得到四肢的时频谱图;最后将其输入到SqueezeNet网络,采用Softmax分类器来实现人体身份识别。实验结果表明,经过微多普勒信号分离后人体身份识别准确率提高5.25%,SqueezeNet网络与其他网络相比,在网络性能上具有准确率高、网络参数少、测试时间短等优势。 Aiming at the problem of human identity recognition based on radar sensor,this paper proposes a human identity recognition method based on micro-Doppler signal separation and SqueezeNet.Firstly,the radar is used to detect the human walking gait and collect the echo data,which is pre-processed to obtain micro-Doppler time-frequency spectrum.Secondly,the micro-Doppler signal separation is used to obtain the time-frequency spectrum of the limbs by the threshold method.Finally,it is input into the SqueezeNet network and the Softmax classifier is used to achieve the human identity recognition.The experimental results show that the accuracy of human identity recognition is improved by 5.25%after micro-Doppler signal separation.Comparing with other networks,SqueezeNet network has the advantages of high accuracy,less network parameters and shorter testing time.
作者 孙延鹏 贺韶枫 屈乐乐 SUN Yanpeng;HE Shaofeng;QU Lele(College of Electronic Information Engineering,Shenyang Aerospace University,Shenyang 110136,China)
出处 《雷达科学与技术》 北大核心 2023年第5期511-516,525,共7页 Radar Science and Technology
关键词 调频连续波雷达 人体身份识别 微多普勒信号分离 短时傅里叶变换 SqueezeNet网络 frequency modulated continuous wave radar human identity recognition micro-Doppler signal sepa-ration short-time Fourier transform SqueezeNet network
  • 相关文献

参考文献1

二级参考文献19

  • 1Chen K, Huang Y, Zhang J E Microwave life detection systems for searching human subjects under earthquake rubble or behind barrier [J]. IEEE Trans on Biomedical Engineering, 2000, 27(1): 105-114.
  • 2Chen V C. Analysis of radar micro-Doppler signature with time- frequency transform [C]// Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing, 2000. USA: IEEE, 2000: 463-466.
  • 3Jonathan L Geisheimer, William S Marshall, Eugene Greneker. A continuous-Wave (CW) Radar for Gait Analysis [C]// Proceedings of the 35th IEEE Asilomar Conference on Signal, Systems and Computers. USA: IEEE, 2001, vol. 1: 834-838.
  • 4Geisheimer J L, Greneker E, Marshall W S. A high-resolution Doppler model of human gait [C]// Proceedings of SPIE on Radar Technology, 2002. USA: SPIE, 2002.
  • 5Chen V C. Micro-doppler effect of micro-motion dynamics: a review [C]// Proceedings of SPIE on Independent Component Analyses, Wavelets, and Neural Networks, 2003. USA: SPIE, 2003: 240-249.
  • 6Thayaparan T, Abrol S, Riseborough E. Micro-Doppler radar signatures for intelligent target recognition [R]// Technical memorandum DRDC Ottawa, Canada: TM 2004-170, 2004.
  • 7Chen V C, Li F Y, Ho S S. Miero-Doppler Effect in Radar- Phenomenon, Model and Simulation Study [J]. IEEE Transactions on Aerospace and Electronic Systems, 2006, 420): 2-21.
  • 8Victor C Chen. Spatial and Temporal Independent Component Analysis of Micro-Doppler Features, US Government work not protected by US copyright.
  • 9Traian Dogaru, Lam Nguyen. FDTD Models of Electromagnetic Scattering by the Human Body, US Army Research Laboratory, US Government work not protected by US copyright.
  • 10T Thayaparan, S Abrol, E Riseborough, L Stankovic, D Lamothe, G Duff. Analysis of radar micro-Doppler signatures from experimental helicopter and human data [J]. IET Radar Sonar Navig., 2007, 1(4): 289-299.

共引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部