摘要
利用多项式方法研究Johnson图J(n,3)与完全图字典积的图上随机游走。根据Hoffman多项式推导出该字典积的邻接矩阵和概率转移矩阵。进一步研究这个字典积上任意两点间的平均首达时间和电阻距离的显式公式。根据该字典积的邻接谱得到了度积基尔霍夫指数、凯梅尼常数和生成树数目。
In this paper,the random walk on the lexicographic product graphs of the Johnson graph J(n,3)and the complete graph is studied by mean of polynomial method.The adjacency matrix and probability transition matrix of the lexicographic product graph is derived according to Hoffman poly-nomial.The explicit formulas of the expected hitting time and resistance distance between any two points on the graphs are further studied.According to the adjacency spectrum of the lexicographic product graph,multiplicative degree-Kirchhoff index,Kemeny constant and the number of spanning trees are obtained.
作者
倪琦
周环
吕宁宁
潘向峰
NI Qi;ZHOU Huan;LV Ningning;PAN Xiangfeng(School of Mathematical Sciences,Anhui University,Hefei 230601;Department of Public Education,Anhui Technical College of Industry Economy,Hefei 230051,China)
出处
《合肥学院学报(综合版)》
2023年第5期25-31,共7页
Journal of Hefei University:Comprehensive ED
基金
安徽省高校自然科学研究重点项目“基于电阻距离的图参数研究”(KJ2021A1534)
安徽省高校优秀青年人才支持计划重点项目“基于电阻距离的基尔霍夫指数和图上随机游走参数的研究”(gxyqZD2022135)。
关键词
Johnson图
字典积
随机游走
平均首达时间
电阻距离
Johnson graph
lexicographic product
random walk
the expected hitting time
resistance distance