摘要
为在非经验指导下获取双向门控循环单元网络中最优隐藏层单元数,实现滚动轴承性能退化趋势预测,提出基于麻雀搜索算法优化深度双向门控循环单元的轴承性能退化趋势预测方法。首先,在正向门控循环单元网络基础上,增加反向门控循环单元网络,以构建深度双向门控循环单元预测网络;然后,将预测值与真实值的均方误差作为适应度值,根据麻雀发现者和捕食者进行参数更新,经优化后获得最优隐藏层单元参数下的深度双向门控循环单元网络预测模型;最后,通过全连接层实现性能退化趋势预测。在公共数据集与实测数据集上进行试验验证,验证了所提方法的有效性与可行性。
In order to obtain the optimal number of hidden layer elements in bidirectional gated cyclic element network under non-empirical guidance and realize the performance degradation trend prediction of rolling bearings,a bearing performance degradation trend prediction method was proposed based on sparrow search algorithm to optimize the depth bidirectional gated cyclic element.Firstly,the forward gating loop unit network is added to the reverse gating loop unit network to construct the deep bi-directional gating loop unit prediction network.Then,the mean square error between the predicted value and the true value was used as the fitness value,and the parameters were updated according to the sparrows finder and predator.After training,the depth bidirectional gated cyclic element network with the optimal hidden layer element parameters was obtained.Finally,the performance degradation trend is predicted by the full connection layer.The validity and feasibility of the proposed method are verified by experiments on public and measured data sets.
作者
陈仁祥
陈国瑞
徐向阳
胡小林
张雁峰
CHEN Renxiang;CHEN Guorui;XU Xiangyang;HU Xiaolin;ZHANG Yanfeng(Chongqing Engineering Laboratory for Transportation Engineering Application Robot,Chongqing Jiaotong University,Chongqing 400074,China;Chongqing International Composite Materials Co.,Ltd.,Chongqing 400082,China)
出处
《振动与冲击》
EI
CSCD
北大核心
2023年第20期12-18,共7页
Journal of Vibration and Shock
基金
国家自然科学基金(51975079)
重庆市教育委员会科学技术研究项目(KJZD-M202200701,KJZD-K202000703)
重庆市研究生联合培养基地(JDLHPYJD2021007)
重庆市专业学位研究生教学案例库(JDALK2022007)。
关键词
滚动轴承
性能退化趋势预测
麻雀搜索算法
参数优化
适应度
rolling bearing
performance degradation trend prediction
sparrow search algorithm
optimization parameters
fitness