期刊文献+

SSA优化深度双向门控循环单元网络的轴承性能退化趋势预测 被引量:1

Bearing performance degradation trend prediction sparrow search algorithm optimization bidirectional gating cycle unit
下载PDF
导出
摘要 为在非经验指导下获取双向门控循环单元网络中最优隐藏层单元数,实现滚动轴承性能退化趋势预测,提出基于麻雀搜索算法优化深度双向门控循环单元的轴承性能退化趋势预测方法。首先,在正向门控循环单元网络基础上,增加反向门控循环单元网络,以构建深度双向门控循环单元预测网络;然后,将预测值与真实值的均方误差作为适应度值,根据麻雀发现者和捕食者进行参数更新,经优化后获得最优隐藏层单元参数下的深度双向门控循环单元网络预测模型;最后,通过全连接层实现性能退化趋势预测。在公共数据集与实测数据集上进行试验验证,验证了所提方法的有效性与可行性。 In order to obtain the optimal number of hidden layer elements in bidirectional gated cyclic element network under non-empirical guidance and realize the performance degradation trend prediction of rolling bearings,a bearing performance degradation trend prediction method was proposed based on sparrow search algorithm to optimize the depth bidirectional gated cyclic element.Firstly,the forward gating loop unit network is added to the reverse gating loop unit network to construct the deep bi-directional gating loop unit prediction network.Then,the mean square error between the predicted value and the true value was used as the fitness value,and the parameters were updated according to the sparrows finder and predator.After training,the depth bidirectional gated cyclic element network with the optimal hidden layer element parameters was obtained.Finally,the performance degradation trend is predicted by the full connection layer.The validity and feasibility of the proposed method are verified by experiments on public and measured data sets.
作者 陈仁祥 陈国瑞 徐向阳 胡小林 张雁峰 CHEN Renxiang;CHEN Guorui;XU Xiangyang;HU Xiaolin;ZHANG Yanfeng(Chongqing Engineering Laboratory for Transportation Engineering Application Robot,Chongqing Jiaotong University,Chongqing 400074,China;Chongqing International Composite Materials Co.,Ltd.,Chongqing 400082,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第20期12-18,共7页 Journal of Vibration and Shock
基金 国家自然科学基金(51975079) 重庆市教育委员会科学技术研究项目(KJZD-M202200701,KJZD-K202000703) 重庆市研究生联合培养基地(JDLHPYJD2021007) 重庆市专业学位研究生教学案例库(JDALK2022007)。
关键词 滚动轴承 性能退化趋势预测 麻雀搜索算法 参数优化 适应度 rolling bearing performance degradation trend prediction sparrow search algorithm optimization parameters fitness
  • 相关文献

参考文献7

二级参考文献144

  • 1贾民平,凌娟,许飞云,钟秉林.基于时序分析的经验模式分解法及其应用[J].机械工程学报,2004,40(9):54-57. 被引量:23
  • 2段晨东,何正嘉,姜洪开.非线性小波变换在故障特征提取中的应用[J].振动工程学报,2005,18(1):129-132. 被引量:13
  • 3胡桥,何正嘉,訾艳阳,张周锁,雷亚国.一种新的混合智能预测模型及其在故障诊断中的应用[J].西安交通大学学报,2005,39(9):928-932. 被引量:3
  • 4JOHNSON S B, GORMLEY TJ, KESSLER S S, et al. System health management with aerospaoce applications[M]. West Sussex, United Kingdom:John Wiley & Sons, Ltd. , 2011.
  • 5HESS A, FILA L. TheJoint strike fighter (JSF) PHM concept: Potential impact on aging aircraft problems[C] . Proceedings of 2002 IEEE Aerospace Conference, Big Sky, Montana, USA, 2002: 3021-3026.
  • 6V ACHTSEV AN OS G, LEWIS F, ROEMEr M. et al. Intelligent fault diagnosis and prognosis for engineering systems[M]. Hoboken, NewJersey, USA:John Wiley & Sons, Inc. , 2006: 1- 454.
  • 7PECHT M G. Prognostics and health management of electronics[M]. Hoboken, NewJersey, USA:John Wiley & Sons, Inc. , 2008:1-355.
  • 8TOBON-MEJIA D A, MEDJIAHER K, ZERHOUNI N, et al. A Data-driven failure prognostics method based on mixture of Gaussians hidden Markov models[J]. IEEE Transactions on Reliability, 2012, 61 (2) : 491-503.
  • 9SCHW ABA VHER M. A survey of data-driven prognostics[C]. Proceedings of the AIAA Infotech @ Aerospace Conference, Reston, VA, USA, 2005:1-5.
  • 10SI X S, WANG W, HU C H, et al. Remaining useful life estimation - A review on the statistical data driven approaches[J]. EuropeanJournal of Operational Research, 2011,213(1): 1-14.

共引文献265

同被引文献13

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部