期刊文献+

基于深度学习算法的地震动重要持时预测模型

Models for predicting ground motion significant duration based on deep learning algorithm
下载PDF
导出
摘要 地震动持时对工程结构地震反应有重要影响,发展可靠的地震动持时预测模型是地震工程一个重要课题。基于日本K-NET和KiK-net在1997—2021年间获得的67813条地震动记录,将地震动记录按照震源类型分为浅地壳地震、俯冲带板间地震、俯冲带板内地震和上地幔地震四种类型,采用深度学习算法,建立了四种震源类型地震的地震动重要持时预测模型,并与传统预测方程进行了对比。结果表明,采用深度学习算法建立的地震动重要持时预测模型具有合理性和可靠性,能够取得良好的预测效果。四种类型地震的地震动重要持时的预测结果差异明显,尤其在震级较大的情况下,所以预测不同类型地震的地震动持时不应采用同一种预测模型。研究结果和结论可供地震动参数预测、地震区划、结构抗震设计和地震危险性分析等工作参考。 Ground motion duration has an important impact on seismic response of engineering structures,the development of reliable ground motion duration prediction models is an important topic in earthquake engineering.Here,based on 67813 ground motion records obtained by K-NET and KiK-net in Japan from 1997 to 2021,these ground motion records were divided into 4 types according to source types of shallow crustal earthquake,subduction interface earthquake,subduction slab earthquake and upper mantle earthquake.Using the deep learning algorithm,4 ground motion significant duration prediction models for the 4 source types of earthquakes were established and compared with the traditional prediction equation.The results showed that ground motion significant duration prediction models established using deep learning algorithm are reasonable and reliable,they can obtain good prediction results;ground motion significant duration prediction results for the 4 types of earthquakes have obvious differences,especially,in cases of larger earthquake magnitudes,so the same prediction model should not be used to predict ground motion significant durations for different types of earthquakes;the study results and conclusions can provide a reference for ground motion parametric prediction,seismic zoning,structural aseismic design and seismic hazard analysis.
作者 贾佳 公茂盛 赵一男 JIA Jia;GONG Maosheng;ZHAO Yinan(Key Lab of Earthquake Engineering and Engineering Vibration,Institute of Engineering Mechanics,China Earthquake Administration,Harbin 150080,China;Key Lab of Earthquake Disaster Mitigation,Ministry of Emergency Management,Harbin 150080,China)
出处 《振动与冲击》 EI CSCD 北大核心 2023年第19期249-259,共11页 Journal of Vibration and Shock
基金 国家自然科学基金项目(52178514) 中国地震局工程力学研究所基本科研业务费专项项目(2021EEEVL0301,2019A01)。
关键词 地震动持时 重要持时 神经网络 深度学习 预测模型 ground motion duration significant duration neural network deep learning algorithm prediction model
  • 相关文献

参考文献7

二级参考文献47

共引文献55

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部