期刊文献+

Parameter estimation for Einstein-dilaton-Gauss-Bonnet gravity with ringdown signals

原文传递
导出
摘要 Future space-based gravitational-wave detectors will detect gravitational waves with high sensitivity in the millihertz frequency band,providing more opportunities to test theories of gravity than ground-based detectors.The study of quasinormal modes(QNMs)and their application in gravity theory testing have been an important aspect in the field of gravitational physics.In this study,we investigate the capability of future space-based gravitational wave detectors,such as LISA,TaiJi,and TianQin,to constrain the dimensionless deviating parameter for Einsteindilaton-Gauss-Bonnet(EdGB)gravity with ringdown signals from the merger of binary black holes.The ringdown signal is modeled by the two strongest QNMs in EdGB gravity.Considering time-delay interferometry,we calculate the signal-to-noise ratio of different space-based detectors for ringdown signals to analyze their capabilities.The Fisher information matrix is employed to analyze the accuracy of parameter estimation,with particular focus on the dimensionless deviating parameter for EdGB gravity.The impact of the parameters of gravitational wave sources on the estimation accuracy of the dimensionless deviating parameter is also studied.We find that the constraint ability of EdGB gravity is limited because the uncertainty of the dimensionless deviating parameter increases with a decrease in the dimensionless deviating parameter.LISA and TaiJi offer more advantages in constraining the dimensionless deviating parameter to a more accurate level for massive black holes,whereas TianQin is more suited to less massive black holes.The Bayesian inference method is used to perform parameter estimation on simulated data,which verifies the reliability of the conclusion.
作者 邵才莹 胡宇 邵成刚 Cai-Ying Shao;Yu Hu;Cheng-Gang Shao(MOE Key Laboratory of Fundamental Physical Quantities Measurement,Hubei Key Laboratory of Gravitation and Quantum Physics,PGMF,and School of Physics,Huazhong University of Science and Technology,Wuhan 430074,China)
出处 《Chinese Physics C》 SCIE CAS CSCD 2023年第10期213-224,共12页 中国物理C(英文版)
基金 the National Key R&D Program of China(2022YFC2204602) the Natural Science Foundation of China(11925503)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部