摘要
针对电子器件向更高功率和更高集成度发展所导致日益严重的散热问题,本文设计了轮辐式微通道散热器.基于轮辐式微通道具有良好分流特性提出了多阶微通道的特色设计,拓展了辐射微通道的设计思路;通过研究发现微通道的对流换热面积、流固占空比与流道布局协同耦合强化冷却能力,而这3项的改变是无法实现单一项的变化,这就更加增大了三者之间的耦合因子.为了兼顾散热器的冷却能力与压降,进一步提出功能化四出口的设计,系统性提高了散热器的冷却能力并降低散热器的压降.采用有限元仿真结合理论方法系统性解析了不同微通道散热器的热阻分布比例,为进一步提高冷却能力指明方向.通过微加工工艺制备出轮辐式多阶微通道散热器,最后通过实验测试验证不同设计的冷却能力,高达932.08 W/cm^(2),为替代传统水冷冷板散热系统奠定基础.
In view of the increasingly serious heat dissipation problem caused by the development of electronic devices towards higher power and higher integration,a rotor-wing microchannel heat sink is designed in this paper.Based on the good shunt characteristics of the rotor-wing microchannel,the characteristic design of the multi-order microchannel is proposed,which expands the design idea of the radiation microchannel.Through this research,it is found that the convective heat transfer area,the fluid-solid duty cycle and the channel layout of the microchannel are synergistically coupled to enhance the cooling capacity,and the change of these three items cannot achieve a single change,which increases the coupling factor between the three.In order to take into account the cooling capacity and pressure drop of the heat sink,a further design of functional four outlets is proposed,which systematically improves the cooling capacity and reduces the pressure drop of the heat sink.The thermal resistance distribution ratio of different microchannel heat sinks is systematically analyzed by finite element simulation and theoretical method,which points out the direction for further improving the cooling capacity.The rotor-wing multi-order microchannel heat sink was fabricated by the micromachining process.Finally,the cooling capacity of different designs was verified by experimental tests and can reach 932.08 W/cm^(2),laying the foundation for replacing the traditional water-cooled plate cooling system.
作者
吴永进
孙云娜
马闯北
蔡涵
王艳
丁桂甫
Yongjin WU;Yunna SUN;Chuangbei MA;Han CAI;Yan WANG;Guifu DING(National Key Laboratory of Science and Technology on Micro/Nano Fabrication,Shanghai Jiao Tong University,Shanghai 200240,China;School of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处
《中国科学:信息科学》
CSCD
北大核心
2023年第9期1822-1837,共16页
Scientia Sinica(Informationis)
基金
国家重点基础研究发展规划(批准号:2021YFB2011800)
基础加强计划领域基金(批准号:2021-JCJQ-JJ-1141)资助项目。
关键词
轮辐式多阶微通道
功能化出口
超强冷却技术
协同强化冷却能力
rotor-wing multi-order microchannel
functional outlet
super cooling technology
collaborative cooling capability