期刊文献+

求解非线性复合刚性脉冲微分方程的Euler分裂方法

EULER SPLITTING METHOD FOR SOLVING NONLINEAR COMPOSITE STIFF IMPULSIVE DIFFERENTIAL EQUATIONS
原文传递
导出
摘要 针对非线性复合刚性脉冲微分方程,对其非刚性部分采用显式Euler方法求解,对其刚性部分采用隐式Euler方法求解,得到了求解问题的Euler分裂方法,研究了该方法的稳定性和收敛性.数值试验验证了所获理论的正确性,同时也表明该方法能显著提升计算速度. For nonlinear composite stiff impulsive differential equations,explicit Euler method is used to solve the non-stif part,and implicit Euler method is used to solve the stiff part.Then Euler splitting method is obtained,and the stability and convergence of the method are studied.The correctness of the obtained theory is verified by numerical experiments.It also shows that this method can significantly improve the computational speed.
作者 吕志 余越昕 Lv Zhi;Yu Yuexin(School of Mathematics and Computational Science,Xiangtan University,Xiangtan 411105,China)
出处 《计算数学》 CSCD 北大核心 2023年第3期344-354,共11页 Mathematica Numerica Sinica
基金 国家自然科学基金(12271367) 湖南省教育厅重点项目(21A0115)资助。
关键词 非线性复合刚性脉冲微分方程 Euler分裂方法 稳定性 收敛性 Nonlinear composite stiff impulsive differential equations Euler splitting method Stability Convergence
  • 相关文献

参考文献3

二级参考文献5

共引文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部