摘要
本文模拟计算了2,2’,4,4’,6,6’-六硝基联苯(HNBP)、2,2’,4,4’,6,6’-六硝基二苯乙烯(HNS)、2,5-二苦基-1,3,4-噁二唑(DPO)和5,5’-双(2,4,6-三硝基苯基)-2,2’-双(1,3,4-噁二唑)(TKX-55)四种耐热含能化合物的分子结构、Mulliken电荷布居、分子静电势(MEP)和Hirshfeld表面,通过研究其分子特性、电子特性以及分子间相互作用,以了解高耐热性含能化合物的耐热机理.结果表明,桥连接结构的复杂性以及分子间强氢键相互作用会增强含能化合物的稳定性.此外,本研究还发现中间基团的加入会对四种含能化合物分子两侧芳香环上碳原子的电荷分布以及分子表面正负静电势区域面积产生一定的影响.
The molecular structures, Mulliken charge populations, molecular electrostatic potentials(MEP) and Hirshfeld surfaces of 2,2’,4,4’,6,6’-hexanitrobiphenyl(HNBP), 2,2’,4,4’,6,6’-hexanitrostilbene(HNS), 2,5-dipicryl-1,3,4-oxadiazole(DPO) and 5,5’-bis(2,4,6-trinitrophenyl)-2,2’-bis(1,3,4-oxadiazole)(TKX-55) were simulated and calculated with the first principles method.By studying the molecular properties, electronic properties and intermolecular interactions, we can understand the heat resistance mechanism of energetic compounds with high heat resistance. The results showed that the complexity of the bridge connection structure and the strong intermolecular hydrogen bond interaction can enhance the stability of energetic compounds. In addition, it was found that the addition of intermediate groups would affect the charge distribution of carbon atoms on aromatic rings on both sides of the molecules and the area of positive and negative electrostatic potential regions on the surfaces of the four energetic compounds.
作者
陈芳
陈瑶
贾方硕
何磊
CHEN Fang;CHEN Yao;JIA Fang-Shuo;HE Lei(School of Chemistry and Chemical Engineering,North University of China,Taiyuan 030051,China)
出处
《原子与分子物理学报》
CAS
北大核心
2024年第1期177-184,共8页
Journal of Atomic and Molecular Physics
基金
山西省基础研究计划自然科学研究面上项目(20210302123055)。
关键词
耐热含能化合物
密度泛函理论(DFT)
电子结构
Heat-resistant energetic compound
Density functional theory(DFT)
Electronic structure