期刊文献+

四种耐热含能化合物电子结构的第一性原理研究

First-principles study on electronic structures of four heat-resistant energetic compounds
下载PDF
导出
摘要 本文模拟计算了2,2’,4,4’,6,6’-六硝基联苯(HNBP)、2,2’,4,4’,6,6’-六硝基二苯乙烯(HNS)、2,5-二苦基-1,3,4-噁二唑(DPO)和5,5’-双(2,4,6-三硝基苯基)-2,2’-双(1,3,4-噁二唑)(TKX-55)四种耐热含能化合物的分子结构、Mulliken电荷布居、分子静电势(MEP)和Hirshfeld表面,通过研究其分子特性、电子特性以及分子间相互作用,以了解高耐热性含能化合物的耐热机理.结果表明,桥连接结构的复杂性以及分子间强氢键相互作用会增强含能化合物的稳定性.此外,本研究还发现中间基团的加入会对四种含能化合物分子两侧芳香环上碳原子的电荷分布以及分子表面正负静电势区域面积产生一定的影响. The molecular structures, Mulliken charge populations, molecular electrostatic potentials(MEP) and Hirshfeld surfaces of 2,2’,4,4’,6,6’-hexanitrobiphenyl(HNBP), 2,2’,4,4’,6,6’-hexanitrostilbene(HNS), 2,5-dipicryl-1,3,4-oxadiazole(DPO) and 5,5’-bis(2,4,6-trinitrophenyl)-2,2’-bis(1,3,4-oxadiazole)(TKX-55) were simulated and calculated with the first principles method.By studying the molecular properties, electronic properties and intermolecular interactions, we can understand the heat resistance mechanism of energetic compounds with high heat resistance. The results showed that the complexity of the bridge connection structure and the strong intermolecular hydrogen bond interaction can enhance the stability of energetic compounds. In addition, it was found that the addition of intermediate groups would affect the charge distribution of carbon atoms on aromatic rings on both sides of the molecules and the area of positive and negative electrostatic potential regions on the surfaces of the four energetic compounds.
作者 陈芳 陈瑶 贾方硕 何磊 CHEN Fang;CHEN Yao;JIA Fang-Shuo;HE Lei(School of Chemistry and Chemical Engineering,North University of China,Taiyuan 030051,China)
出处 《原子与分子物理学报》 CAS 北大核心 2024年第1期177-184,共8页 Journal of Atomic and Molecular Physics
基金 山西省基础研究计划自然科学研究面上项目(20210302123055)。
关键词 耐热含能化合物 密度泛函理论(DFT) 电子结构 Heat-resistant energetic compound Density functional theory(DFT) Electronic structure
  • 相关文献

参考文献2

二级参考文献13

  • 1阳世清,徐松林,雷永鹏.氮杂环含能化合物的研究进展[J].含能材料,2006,14(6):475-484. 被引量:49
  • 2DaconsJC, Sitzmann M E. Synthesis of 2,4,6-trinitrophenylde- rivatives of heterocyclic compounds [J]. J Hetrocyclic Chem, 1987, 14:1151 -5.
  • 3Kamlet M L, Adolph H G. The relationship of impact sensitivity with structure of organic high explosive Ⅱ [J]. Propellants, Explosives, Pyrotechnics, 1979(4) : 30 -34.
  • 4Sharmin G P, Buzykin B I, Fassakhov R Kh. 2,5-dipicryl-1,3,4- oxadiazole[P]. U.S.S. R 233671,1965.
  • 5Sitzmann M E, Adelphi Md. Method for Preparing2,S-dipicryl- 1,3,4,oxadiazole[P]. U.S.P. 4777258, 1988.
  • 6Sitzmann M E. 2,5-dipicryl-1 , 3,4-oxadiazole : A Shock-sensitive Explosive with High Thermal Stability (Thermalystable Substitute for PETNd[J]. JEnergMater, 1988 (6): 129-44.
  • 7Sheng D L, Ma F E,Lv Q L, Study on the Preparation of 2,5-di- picryl-1 ,3,4-oxadiazole [J]. Initiators and Pyrotechnics, 1998, (2) : 8 -15.
  • 8刘玉存,刘登程,杨宗伟,张毅,谭彦威,王建华.耐热炸药ANPZO性能的实验研究[J].含能材料,2012,20(6):721-725. 被引量:6
  • 9罗义芬.高能钝感炸药MAD-X1合成简讯[J].火炸药学报,2015,38(4):4-4. 被引量:2
  • 10刘皓楠,王建华,刘玉存,于雁武,袁俊明.HMX/ANPZO共晶炸药的制备及表征[J].火炸药学报,2017,40(2):47-51. 被引量:7

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部