摘要
研究中国碳排放关键影响因素对于实现碳达峰碳中和目标具有关键意义。首先,运用空间杜宾模型分析2003—2019年我国各省碳排放量的空间集群效应,表明我国碳排放量具有显著的空间分布特性,其中能源结构对碳排放量的影响最大,其次人口规模、能源强度,人均GDP、城镇化率和产业结构对碳排放也有一定的影响。然后,选取人均GDP、能源结构、能源强度、人口规模和城镇化率作为碳排放影响因素,发展了联合改进蝙蝠算法与BP神经网络的碳排放量预测模型,测试结果表明该模型的预测平均误差为0.16%。最后,设立高速、中速、低速碳达峰3种情景进行情景分析,得到了我国计及碳汇的碳排放量预测值,研究表明在高速和中速情景下,我国有望在2028—2029年实现碳达峰目标,对应碳排放峰值在120亿~122亿t之间。本研究可为我国制订能源强度和能源结构的调整方案提供参考。
It is critical to investigate the key influencing factors of China’s carbon emissions in order to achieve the goal of carbon peaking and carbon neutrality.Firstly,a spatial cluster effect analysis of China’s provincial carbon emissions in 2003—2019 shows that the spatial distribution characteristics of carbon emissions significantly affect the energy structure of carbon emissions,followed by population size,energy intensity,per capita GDP,urbanization rate andindustrial structure of carbon emissions.Then,as influencing factors of carbon emissions,per capita GDP,energy structure,energy intensity,population size,and urbanization rate were chosen,and a carbon emissions prediction model was developed using an improved bat algorithm and BP neural network.According to the results of the test,the model’s average error is 0.16%.Finally,three scenarios of high-,medium-,and low-speed carbon peaking were created for scenario analysis,and the predicted values of carbon emissions after taking into account the carbon sinks were obtained.According to the research,China is expected to reach the carbon peaking target in 2028—2029 under the high-and medium-speed scenarios,corresponding to a carbon emission peak of 12 billion to 12.2 billion tons.This study can provide a reference for the adjustment scheme of energy intensity and energy structure.
作者
孙蒙
李长云
邢振方
于永进
SUN Meng;LI Changyun;XING Zhenfang;YU Yongjin(College of Electrical Engineering and Automation,Shandong University of Science and Technology,Qingdao 266590,China)
出处
《高电压技术》
EI
CAS
CSCD
北大核心
2023年第9期4011-4021,共11页
High Voltage Engineering
基金
山东省重点研发计划(2019GGX102049)。
关键词
碳排放
碳达峰
空间模型
情景分析
MBA
影响因素
carbon emissions
carbon peaking
spatial model
scenario analysis
MBA
influencing factors