摘要
对图书馆数据存储中的压缩感知问题的数值算法进行研究.将传统梯度下降法多步扩展的重球加速法与一种新的阈值技术——最优s阈值相结合,提出了用于求解压缩感知问题的两种算法:基于重球的最优s阈值算法和基于重球的最优s阈值追踪算法.证明了算法产生的迭代点序列全局收敛到压缩感知问题的一个解.
This paper mainly focuses on the numerical algorithm of compressed sensing problem,which is used for library data storage.By merging heavy-ball acceleration method which is a multi-step extension of the traditional gradient descent method and a new thresholding technique-optimal s-thresholding,we propose two algorithms to solve the compressed sensing problem,namely,heavy-ball-based optimal s-thresholding algorithm(HBOT)and heavy-ball-based optimal s-thresholding pursuit algorithm(HBOTP).It is proved that the sequence of iteration points generated by the algorithms converges globally to a solution of the compressed sensing problem.
作者
张善美
邱茗
屈彪
ZHANG Shanmei;QIU Ming;QU Biao(Library of Qufu Normal University;Institute of Operations Research,Qufu Normal University,276826,Rizhao,Shandong,PRC)
出处
《曲阜师范大学学报(自然科学版)》
CAS
2023年第4期37-42,共6页
Journal of Qufu Normal University(Natural Science)
基金
国家自然科学基金(12271309)
山东省自然科学基金(ZR2022MA038)。
关键词
图书馆数据存储
压缩感知
最优阈值算法
收敛性
library data storage
compressed sensing
optimal thresholding algorithm
convergence