摘要
提出一种融合随机反向学习的蜜獾算法(random opposition-based learning honey badger algorithm,ROBLHBA)以解决复杂的无人机三维路径规划问题。在原算法的挖掘阶段和采蜜阶段后加入随机反向学习策略,增强算法的全局能力,加快了收敛速度。此外,为了更加真实地模拟复杂的无人机三维路径规划问题,将路径长度和与威胁障碍的碰撞情况作为代价函数,将无人机三维路径规划问题转化为对无人机的安全性和飞行操纵约束下的优化问题,使仿真实验更加具有真实性。实验对比多种群智能优化算法在同一场景下的运行结果,同时也将改进算法在不同场景下运行。实验结果体现改进后的蜜獾算法在无人机三维路径规划问题上有更好的实用性和鲁棒性。
This paper presents a random opposition based learning honey badger algorithm(ROBLHBA)to solve the complex three-dimensional path planning problem of UAV.The random reverse learning strategy is added to the original algorithm after the mining stage and the honey collecting stage,which enhances the global ability of the algorithm and accelerates the convergence speed.In addition,in order to more truly simulate the complex UAV three-dimensional path planning problem,this paper takes the path length and the collision situation of threat obstacle as the cost function,and transforms the UAV three-dimensional path planning problem into an optimization problem under the constraints of UAV safety and flight control,so that the simulation experiment is more realistic.The experiment compares the running results of several swarm intelligence optimization algorithms in the same scenario,and the improved algorithm also runs in different scenarios.The experimental results show that the improved honeybadger algorithm has better practicability and robustness in UAV 3D path planning.
作者
文昌盛
贾鹤鸣
饶洪华
王琢
苏媛媛
WEN Changsheng;JIA Heming;RAO Honghua;WANG Zhuo;SU Yuanyuan(Department of Information Engineering,Sanming University,Sanming,Fujian 365004)
出处
《武夷学院学报》
2023年第9期7-13,共7页
Journal of Wuyi University
基金
福建省自然科学基金项目(2021J011128)
国家级大学生创新创业训练计划项目(202311311019)。
关键词
无人机三维路径规划
安全约束条件
蜜獾算法
随机反向学习
UAV three-dimensional path planning
safety constraints
honey badger algorithm
random opposition-based learning