期刊文献+

基于深度学习的地震舆情信息提取及时空可视化 被引量:2

Seismic public opinion information extraction and temporal-spatial visualization based on deep learning
下载PDF
导出
摘要 社交媒体平台作为网络舆情的重要载体,可为地震等重大灾害事件的应急管理提供及时有效的信息,但针对社交媒体数据中蕴含的细粒度主题信息提取并分析灾情的研究尚有欠缺。基于深度学习算法提取社交媒体数据中蕴含的细粒度地震主题信息,以2021年5月21日“大理漾濞6.4级地震”事件为例,构建一个主题信息提取流程框架,通过对模型进行优化训练,整体精度达到80%以上,将新获取的青海地震数据集输入模型进行验证,也达到预期效果,2次地震验证结果说明该模型在灾害主题信息提取中具有可行性。最后,结合关键词挖掘技术、情感分析和核密度估计等辅助舆情分析法将地震主题时空可视化,为灾情研判和应急管理工作提供新思路。 As an important carrier of network public opinion,social media platforms can provide timely and effective information for emergency management of major disaster events such as earthquakes.However,there is still a lack of research on extracting and analyzing the disaster situation with fine-grained topic information contained in social media data.This paper extracts fine-grained seismic topic information contained in social media data based on deep learning algorithms.Take the“Dali Yangbi M s6.4 earthquake”event on May 21,2021 as an example,build a framework of topic information extraction process,by optimizing the training of the model,the overall accuracy reaches more than 80%.The newly acquired Qinghai seismic data set was input into the model for verification,and the expected effect was also achieved.The verification results of two earthquakes show that the model is feasible in the extraction of disaster theme information.Finally,combined with the auxiliary public opinion analysis methods such as keyword mining technology,sentiment analysis and kernel density estimation,the earthquake theme was visualized in space and time.It provides new ideas for disaster research and judgment and emergency management.
作者 王晨雨 叶妍君 邱英俏 杜美庆 WANG Chenyu;YE Yanjun;QIU Yingqiao;DU Meiqing(School of Earth Science and Engineering,Hebei University of Engineering,Handan 056038,China;State Key Laboratory of Resources and Environmental Information System,Institute of Geographic Sciences and Natural Resources Research,CAS,Beijing 100101,China;Shandong Zhengyuan Digital City Construction Co.,Ltd.,Yantai 264670,China;Yantai Smart City&Internet of Facilities Engineering Research Center,Yantai 264670,China)
出处 《自然灾害学报》 CSCD 北大核心 2023年第5期64-79,共16页 Journal of Natural Disasters
基金 河北省自然科学基金项目(D2021402006) 河北省高等学校科学技术研究项目(BJK2023088) 资源与环境信息系统国家重点实验室开放基金项目。
关键词 新浪微博 卷积神经网络 文本分类 地震主题提取 时空特征 Sina Weibo convolutional neural network text classification seismic topic extraction spatio-temporal characteristics
  • 相关文献

参考文献48

二级参考文献500

共引文献603

同被引文献18

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部