期刊文献+

基于VMD-AHA-LSTM的短期电力负荷预测 被引量:2

Short-term Power Load Forecasting Based on VMD-AHA-LSTM
下载PDF
导出
摘要 为了更好地提取负荷序列特征,降低噪声干扰,提高短期电力负荷预测精度,提出了一种由变分模态分解(VMD)、人工蜂鸟算法(AHA)与长短期记忆网络(LSTM)相结合的预测方法。首先通过VMD将负荷数据分解为多个平稳的子序列,然后采用AHA对LSTM超参数进行寻优,将各个序列分别送入到优化后的模型中进行预测,最后对各序列进行重组,得到预测结果。通过我国南方某巿真实数据仿真可知:相较于BP等传统模型,VMD-AHA-LSTM模型的预测效果更好。 In order to extract load sequence features better,reduce noise interference and improve the shortterm power load forecasting accuracy,a forecast method is proposed that combines Variational Mode Decomposition(VMD),Artificial Hummingbird Algorithm(AHA)and Long Short Term Memory(LSTM)network.The prediction results are obtained by first decomposing the load data into several smooth sub-series by VMD,then using AHA to find the optimal LSTM hyperparameters,feeding each series into the optimised model for prediction,and finally reorganising each series.The VMD-AHA-LSTM prediction results are better than the traditional models such as BP,as shown by the simulation of real data from a city in southern China.
作者 穆昱壮 车浩然 夏伟峰 张家豪 MU Yuzhuang;CHE Haoran;XIA Weifeng;ZHANG Jiahao(Sanya Power Supply Bureau,Hainan Power Grid Co.,Ltd.,Sanya 572099,Hainan Province;Guodian Power Chaoyang Thermal Power Co.,Ltd.,Chaoyang 122000,Liaoning Province;School of Automation,Shenyang Institute of Engineering,Shenyang 110136,Liaoning Province;Shenxi Thermal Power Plant,National Energy Group Liaoning Electric Power Co.,Ltd.,Shenyang 110002,Liaoning Province)
出处 《沈阳工程学院学报(自然科学版)》 2023年第4期46-50,共5页 Journal of Shenyang Institute of Engineering:Natural Science
基金 沈阳市科技计划项目(22-322-3-29)。
关键词 负荷预测 变分模态分解 人工蜂鸟算法 长短期记忆网络 Load forecasting variable mode decomposition artificial hummingbird algorithm long short-term memory
  • 相关文献

参考文献10

二级参考文献105

共引文献156

同被引文献24

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部