期刊文献+

基于深度置信网络的轴承故障识别分析与研究

Analysis and Investigationon Discrimination of Bearing Fault Based on Deep Belief Networks
下载PDF
导出
摘要 轴承为诸多机械设备的重要零部件,对其故障状态的识别对于设备的稳定运行具有重要的意义。本文首先利用改进的自适应噪声完全集合经验模态分解(ICEEMDAN)与小波阈值相结合的方法去除轴承振动信号中的伪迹,然后分别提取信号的标准差、峭度、样本熵等线性和非线性特征,最后将多域特征作为输入项,利用深度置信网络(DBN)进行训练识别,建立了能够有效识别轴承故障类型的网络模型。试验结果表明:该模型对轴承故障类型识别的正确率可达97.8%。 Bearings are important components of many mechanical equipment,and the discriminationof their healthy operating status is of great significance for the stable and safe operation of theequipment.In the present work,an improved method combining Improved Complete Ensemble Empirical Mode Decomposition with Adaptive Noise(ICEEMDAN)and wavelet threshold wasused to denoise the bearing vibration signals.Then,extracting standard deviation,kurtosis,sample entropy,and other linear and non-linear features from the denoised signal.Finally,multi-domain featureswere used as input and training classificationwas carried out with Deep Belief Network(DBN),and a network model thatcan effectively discriminatethe bearing fault types wasestablished.Theexperimental results show that the accuracy of thisdiscriminant model for bearing fault type is up to 97.8%.
作者 刘雨轩 王琳 张鹏镇 徐鑫 尹晓伟 陈骥驰 LIU Yuxuan;WANG Lin;ZHANG Pengzhen;XU Xin;YIN Xiaowei;CHEN Jichi(School of Energy and Power,Shenyang Institute of Engineering,Shenyang 110136,Liaoning Province;School of Mechanical Engineering,Shenyang Institute of Engineering,Shenyang 110136,Liaoning Province;School of Mechanical Engineering,Shenyang University of Technology,Shenyang 110870,Liaoning Province)
出处 《沈阳工程学院学报(自然科学版)》 2023年第4期84-89,共6页 Journal of Shenyang Institute of Engineering:Natural Science
基金 国家自然科学基金(62001312,62101355) 辽宁省教育厅科学研究项目(JL-1909) 辽宁省科学技术计划项目(2021-MS-269)。
关键词 轴承振动信号 ICEEMDAN 小波阈值 深度置信网络 Bearing vibration signal ICEEMDAN wavelet threshold deep belief network
  • 相关文献

参考文献10

二级参考文献110

  • 1何江江,李孝全,赵玉伟,张保山,丁海斌.基于改进EEMD的卷积神经网络滚动轴承故障诊断[J].重庆大学学报(自然科学版),2020,43(1):82-89. 被引量:7
  • 2崔长春,刘文林,郑俊哲.支持向量机理论与应用[J].沈阳工程学院学报(自然科学版),2007,3(2):170-172. 被引量:11
  • 3叶涛,朱学峰,李向阳,史步海.基于改进k-最近邻回归算法的软测量建模[J].自动化学报,2007,33(9):996-999. 被引量:15
  • 4Huang N E.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proceedings of the Royal Society of London.Series A: Mathematical, Physical and Engineering Sciences, 1998,454 ( 1971 ) : 903-995.
  • 5Zhang Y,Gao Y,Wang L,Chen J, et al.The removal of wall components in Doppler ultrasound signals by using the empirical mode decomposition algorithm[J].IEEE Trans on Biomed Eng,2007,9(9) : 1631-1642.
  • 6Ning B, Qiyu S, Zhihua Y, et al.Robust image watermarking based on multiband wavelets and empirical mode decom- posetion[J].IEEE Trans on Image Process,200 7,8(5): 1956-1966.
  • 7Mallat S.A wavelet tour of signal processing[M].2nd ed. New York:Stanford University, 1999.
  • 8Kopsinis Y, McLauglin S.Development of EMD-Based Denoising Methods Inspired by Wavelet Thresholding[J]. IEEE Transactions on Signal Processing, 2009, 57(4): 1351-1362.
  • 9Kopsinis Y, McLauglin S.Empirical mode decomposition based soft-thresholding[C]//Proc 16th Eur Signal Process Conf,2008,56( 1 ) : 1-13.
  • 10http ://csegroups.case.edu/bearingdatacenter/pages/welcome- case-western-reserve-university-bearing-data-center-website.

共引文献290

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部