期刊文献+

基于改进NanoDet和GRU的交警手势识别研究

Research on Traffic Police Gesture Recognition Based on Improved NanoDet and GRU
下载PDF
导出
摘要 无人驾驶车辆对道路交通指示牌以及信号灯具有良好的识别效果,但在交警手势识别方面还有进一步发展的空间。当交警和交通信号灯同时在场以指挥复杂的路况时,能够识别出交警手势并根据交警手势优先做出判断尤为重要。考虑到车载设备的性能限制,使用了改进的NanoDet以保障实时从画面中提取人群中的交警区域,将注意力机制和GRU相结合,提高了该网络对交警手势的识别精度。设计了一种并行的运行架构,提高了交警手势智能识别系统的整体执行效率。 Unmanned vehicles have good recognition performance for road traffic signs and signal lights,but there is room for further development in the recognition of traffic police gestures.It is particularly important to recognize traffic police gestures and prioritize making judgments based on them when both traffic police and traffic lights are present to command complex road conditions.Considering the performance limitations of onboard devices,an improved NanoDet is used to ensure real-time extraction of traffic police areas from the scene.The attention mechanism is combined with GRU to improve the recognition accuracy of traffic police gestures in the network.Design a parallel operating architecture to improve the overall execution efficiency of the traffic police gesture intelligent recognition system.
作者 于瓅 马天祥 YU Li;MA Tianxiang(School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan Anhui 232001,China)
出处 《佳木斯大学学报(自然科学版)》 CAS 2023年第5期10-14,共5页 Journal of Jiamusi University:Natural Science Edition
基金 2021年安徽省重点研究与开发计划项目(202104d07020010)。
关键词 交警手势 NanoDet GRU 智能识别 traffic police gestures NanoDet GRU intelligent recognition
  • 相关文献

参考文献6

二级参考文献58

  • 1邹湘军,孙健,何汉武,郑德涛,陈新.虚拟现实技术的演变发展与展望[J].系统仿真学报,2004,16(9):1905-1909. 被引量:285
  • 2杨涛,肖俊,吴飞,庄越挺.基于分层曲线简化的运动捕获数据关键帧提取[J].计算机辅助设计与图形学学报,2006,18(11):1691-1697. 被引量:27
  • 3杨一鸣,潘嵘,潘嘉林,杨强,李磊.时间序列分类问题的算法比较[J].计算机学报,2007,30(8):1259-1266. 被引量:40
  • 4Mitra S,Acharya T.Gesture recognition:a survey[J].IEEE Trans on Systems,Man,and Cybernetics-Part C:Applications and Reviews,2007,37(3):311-324.
  • 5Wang Sy Bor,Quattoni A,Morency L P,et al.Hidden conditional random fields for gesture recognition[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2006:1521-1527.
  • 6Alon J,Athitsos V,Yuan Quan,et al.A unified framework for gesture recognition and spatiotemporal gesture segmentation[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2009,31(9):1685-1699.
  • 7Miguel R,Gabriel D,Sergio E.Feature weighting in dynamic time warping for gesture recognition in depth data[C]//IEEE International Conference on Computer Vision Workshops,2011:1182-1188.
  • 8Shotton J,Fitzgibbon A,Cook M,et al.Real-time human pose recognition in parts from single depth images[C]//Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2011:1297-1304.
  • 9Berndt D J,Clifford J.Using dynamic time warping to find patterns in time series[C]//KDD Workshop,1994.
  • 10Lichtenauer J F,Hendriks E A,Reinders M J.Sign language recognition by combining statistical DTW and independent classification[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):2040-2046.

共引文献41

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部