期刊文献+

几类图的连通包数 被引量:1

CONNECTED HULL NUMBERS OF SOME CLASSES OF GRAPHS
下载PDF
导出
摘要 通过研究几类图的连通包数,确定了友谊图、风车图及联图P_(m)∨K_(n)^(-)与C_(m)∨K_(n)^(-)的连通包数,其中P_(m)是具有m个顶点的路,C_(m)是长度为m的圈,且k_(n)^(-)是完全图K_(n)的补图。 This paper determines the connected hull numbers of friendship graphs,dutch windmill graphs,and join graphs P_(m)∨K_(n)^(-) and C_(m)∨K_(n)^(-),where P _(m)is the path of size m, C_(m) is the cycle of length m,and K_(n)^(-) is the complement of complete graph K_(n ).
作者 王展鹏 贾倩琼 马儇龙 WANG Zhan-peng;JIA Qian-qiong;MA Xuan-long(School of Science,Xi'an Shiyou University,Xi'an,Jiangxi 710065,China)
出处 《井冈山大学学报(自然科学版)》 2023年第5期6-10,14,共6页 Journal of Jinggangshan University (Natural Science)
基金 国家自然科学基金项目(11801441)。
关键词 凸集 连通包集 连通包数 convex set connected hull set connected hull number
  • 相关文献

参考文献9

二级参考文献34

  • 1ZHANG Zhongfu, CHEN Xiang’en, LI Jingwen, YAO Bing, LU Xinzhong & WANG Jianfang College of Mathematics and Information Science, Northwest Normal University, Lanzhou 730070, China,Department of Computer, Lanzhou Normal College, Lanzhou 730070, China,Institute of Applied Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, China,College of Information and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China,Institute of Applied Mathematics, Chinese Academy of Sciences, Beijing 100080, China.On adjacent-vertex-distinguishing total coloring of graphs[J].Science China Mathematics,2005,48(3):289-299. 被引量:175
  • 2Dong Wei,Xu BaoGang,Zhang XiaoYan.Improved bounds on linear coloring of plane graphs[J].Science China Mathematics,2010,53(7):1891-1898. 被引量:4
  • 3张忠辅,程辉,姚兵,李敬文,陈祥恩,徐保根.图的邻点强可区别的全染色[J].中国科学(A辑),2007,37(9):1073-1082. 被引量:29
  • 4Tong L D. The forcing hull and forcing geodetic numbers of graphs [ J ]. Discrete Applied Math, 2009, 157:1159 - 1163.
  • 5Chartrand G, Harary F, Zhang P. Geodetic Sets in Graphs[J]. Discussiones Mathematicae Graph Theory, 2000, (20) : 129 - 138.
  • 6Chartrand G, Zhang P. The forcing geodetic number of a graph[J]. Discuss Math Graph Theory, 1999, 19:45 -58.
  • 7Evertt M G, Seidman S B. The hull number of a graph[J]. Discrete Math, 1985, 57:217 -223.
  • 8John J, Mary G V. The connected hull number of a graph[ J]. South Asian Journal of Mathematics, 2012, 2(5) : 512 - 520.
  • 9Chartrand G, Zhang P. Introduction to Graph Theory[ M ]. Beijing: Posts and Telecom Press, 2006.
  • 10CHARTRAND G, ZHANG P. Introduction to Graph Theory[M]. Beijing: Posts and Telecom Press, 2006.

共引文献5

同被引文献7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部