期刊文献+

基于YOLOv3-spp的汽车轮毂表面缺陷检测算法研究与分析 被引量:4

Research and Analysis of Automobile Wheel Hub Surface Defect Detection Algorithm Based on YOLOv3-spp
下载PDF
导出
摘要 针对传统人工检测方法效率低且准确率不高等问题,提出一种基于YOLOv3-spp网络的自动缺陷检测方法。首先通过图像切片提取缺陷区域,然后将提取的缺陷图片经过数据增强后组成数据集并以此训练YOLOv3-spp网络,接着对比分析了不同深度学习网络及数据集筛选方法对轮毂表面缺陷的检测效果。实验结果表明:在工业现场采集的数据集上,训练好的YOLOv3-spp神经网络可以准确地定位,并识别出点状、线性、油泥油漆、针孔4类缺陷,其平均准确率分别为84.5%、93.4%、95.4%和89.5%,检测速度达到35 ms/幅,满足检测的实时性要求,且检测准确率优于Faster R-CNN和SSD两种常用神经网络。 Aiming at the problems of low efficiency and low accuracy of traditional manual detection methods,an automatic defect detection method based on YOLOv3-spp network is proposed.Firstly extracts the defect area through image slicing,and then the extracted defect images are formed into a data set after data enhancement,which is used to train the YOLOv3-spp network.What s more the detection effects of different deep learning networks and data set screening methods on wheel hub surface defects are compared and analyzed.The experiment results show that:On the dataset collected from the industrial site,the trained YOLOv3-spp network can accurately locate and identify four types of defects:point-like,linear,oily sludge and pinhole,with an average accuracy of 84.5%,93.4%,95.4%and 89.5%respectively.The detection time of a single image is 35 ms,meeting the real-time requirements.Furthermore,the detection accuracy is better than two common neural networks:Faster R-CNN and SSD.
作者 张震宇 刘阳 刘福才 ZHANG Zhen-yu;LIU Yang;LIU Fu-cai(Engineering Research Center of the Ministry of Education for Intelligent Control System and Intelligent Equipment,Yanshan University,Qinhuangdao,Hebei 066004,China;CITIC Dicastal Co.Ltd,Qinhuangdao,Hebei 066004,China;Hebei High-end Equipment Industry Technology Research Institute,Qinhuangdao,Hebei 066004,China)
出处 《计量学报》 CSCD 北大核心 2023年第9期1375-1382,共8页 Acta Metrologica Sinica
基金 国家自然科学基金联合基金(U22A2050) 河北省自然科学基金(F2022203043) 省级重点实验室绩效补助经费(22567612H)。
关键词 计量学 表面缺陷检测 汽车轮毂 机器视觉 深度学习 YOLOv3-spp 平均准确率 metrology surface defect detection automobile hub machine vision deep learning YOLOv3-spp average accuracy
  • 相关文献

参考文献12

二级参考文献103

共引文献92

同被引文献27

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部