期刊文献+

基于归一化注意力机制的特征自适应融合目标跟踪算法 被引量:1

Target Tracking Algorithm Based on Normalized Attention Mechanism with Feature Adaptive Fusion
下载PDF
导出
摘要 针对快速运动目标跟踪时图像的形变和低分辨率等问题,基于当前的孪生网络,提出一种基于归一化注意力机制的特征自适应融合目标跟踪算法。首先,通过轻量级的注意力机制抑制不太明显的权重,对注意力模块施加权重稀疏惩罚,并对主干网络最后4个特征层进行路径增强;其次,为捕捉在线跟踪过程中目标的外观变化,提升算法鲁棒性,提出了一种插件式的模板在线更新方法;最后,利用回归增强分类的方法完成对目标的跟踪。实验结果表明:该算法在OTB100,UAV123两个挑战性数据集上分别取得了63.3%和59.5%的较高成功率;同时,在外界光照变化、图像背景复杂、目标平面内旋转时,算法具有较强的鲁棒性。 To solve the difficult problems of image deformation and low resolution in fast moving target tracking.A feature-adaptive fusion target tracking algorithm based on a normalised attention mechanism is proposed based on current siamese networks.Firstly,the less obvious weights are suppressed by a lightweight attention mechanism that imposes a weight sparsity penalty on the attention module.While a path enhancement method is proposed,path strengthening is applied to the last four feature layers of the backbone.Secondly,a plug-in template online update method is proposed in order to capture changes in the appearance of the target during online tracking and improve the robustness of the algorithm.Finally,a regression-enhanced classification method is used to complete the tracking of the target.The experimental results show that the proposed algorithm achieves high success rates of 63.3%and 59.5%on two challenging datasets,OTB100,UAV123,respectively.Also,the algorithm has strong robustness when the illumination changes,the image background is complex and the target is rotated in-plane.
作者 张立国 章玉鹏 金梅 张升 耿星硕 ZHANG Li-guo;ZHANG Yu-peng;JIN Mei;ZHANG Sheng;GENG Xing-shuo(Hebei Key Laboratory of Measurement Technology and Instrument,Yanshan University,Qinhuangdao,Hebei 066004,China;School of Electrical Engineering,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《计量学报》 CSCD 北大核心 2023年第9期1383-1389,共7页 Acta Metrologica Sinica
基金 河北省科学技术研究与发展计划科技支撑计划(20310302D) 河北省中央引导地方专项(199477141G)。
关键词 计量学 目标跟踪算法 归一化注意力机制 孪生网络 路径增强 机器视觉 图像处理 metrology target tracking algorithm normalized lightweight attention mechanism siamese network path strengthening machine vision image processing
  • 相关文献

参考文献3

二级参考文献11

共引文献21

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部