摘要
论文首先以人均GDP、能源强度、客货运周转量、不同运输方式周转量占比为自变量,以交通运输碳排放为因变量构建STIRPAT模型,然后以2030年碳达峰为主要约束条件,以运输能源消耗最小、总运输周转量最大为目标构建运输结构优化模型,采用NSGA2算法求解得到Pareto最优解集,基于熵权-Topsis法选择最佳运输结构,最后进一步求得从现有运输结构到2030年最佳运输结构的优化路径。研究结果表明:最佳方案下2030年我国公路、铁路、水路、航空运输占比分别为13.05%、30.05%、56.52%、0.38%,能源消耗量为19024.90万吨标准煤,总运输周转量为293759.86亿吨公里。同等运输周转量下,优化后的运输结构与现有结构相比,能源消耗量减少了30.45%。另外,运输结构优化路径显示,“公转铁、公转水”的最优调整期主要集中于2023—2026/2027年。上述研究对我国低碳运输结构的优化调整提供了一定的理论参考和现实指导。
Firstly,the STIRPAT model was constructed using per capita GDP,energy intensity,passenger and freight turnover,and the proportion of different transport modes’turnover as independent variables,and transport carbon emissions as dependent variables.Then,with 2030 carbon peak as the main constraint condition,the optimization model is constructed to minimize transportation energy consumption and maximize total transportation turnover.The Pareto optimal solution set is solved by NSGA2 algorithm,and the optimal transportation structure is selected based on entropy-Topsis method.Finally,the optimal path from the existing transport structure to the best transport structure is obtained.The results show that under the optimal scheme,the proportion of road,railway,waterway and air transport in 2030 is 13.05%,30.05%,56.52%and 0.38%respectively,the energy consumption is 190.249 million tons of standard coal,and the total transport turnover is 29375.986 billion ton-km.Compared with the existing transport structure,the energy consumption decreased by 30.45%with the optimized transport structure when the same converted turnover is achieved.In addition,the optimization path of transportation structure shows that the optimal adjustment period of“road to rail and water”is mainly concentrated in 2023-2026/2027.The above research provides theoretical and practical guidance for the optimization and adjustment of China’s low-carbon transportation structure.
作者
孙佳
孙启鹏
高捷
张士行
乔佳璐
李弢
SUN Jia;SUN Qipeng;GAO Jie;ZHANG Shihang;QIAO Jialu;LI Tao(School of Transportation Engineering,Chang’an University,Xi’an Shaanxi 710064,China;School of Economics and Management,Chang’an University,Xi’an Shaanxi 710064,China;Transport Planning and Research Institute,Ministry of Transport,Beijing 100028,China)
出处
《生态经济》
北大核心
2023年第11期54-59,共6页
Ecological Economy
基金
陕西省自然科学基金“西部乡村振兴中交通网络溢出效应及区域化调控机制研究”(2022JM-426)
中央高校基本科研业务费专项资金“西部乡村交通网络溢出效应及优化研究”(300102232505)。
关键词
碳达峰
双目标规划
运输结构
NSGA2算法
carbon peak
dual objective programming
transportation structure
NSGA2 algorithm