期刊文献+

Multiscale morphological analysis of bone microarchitecture around Mg-10Gd implants

原文传递
导出
摘要 The utilization of biodegradable magnesium(Mg)-based implants for restoration of bone function following trauma represents a transformative approach in orthopaedic application.One such alloy,magnesium-10 weight percent gadolinium(Mg-10Gd),has been specifically developed to address the rapid degradation of Mg while enhancing its mechanical properties to promote bone healing.Previous studies have demonstrated that Mg-10Gd exhibits favorable osseointegration;however,it exhibits distinct ultrastructural adaptation in comparison to conventional implants like titanium(Ti).A crucial aspect that remains unexplored is the impact of Mg-10Gd degradation on the bone microarchitecture.To address this,we employed hierarchical three-dimensional imaging using synchrotron radiation in conjunction with image-based finite element modelling.By using the methods outlined,the vascular porosity,lacunar porosity and the lacunar-canaliculi network(LCN)morphology of bone around Mg-10Gd in comparison to Ti in a rat model from 4 weeks to 20 weeks post-implantation was investigated.Our investigation revealed that within our observation period,the degradation of Mg-10Gd implants was associated with significantly lower(p<0.05)lacunar density in the surrounding bone,compared to Ti.Remarkably,the LCN morphology and the fluid flow analysis did not significantly differ for both implant types.In summary,a more pronounced lower lacunae distribution rather than their morphological changes was detected in the surrounding bone upon the degradation of Mg-10Gd implants.This implies potential disparities in bone remodelling rates when compared to Ti implants.Our findings shed light on the intricate relationship between Mg-10Gd degradation and bone microarchitecture,contributing to a deeper understanding of the implications for successful osseointegration.
出处 《Bioactive Materials》 SCIE CSCD 2023年第12期154-168,共15页 生物活性材料(英文)

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部