期刊文献+

Falkner-Skan aspects of a radiating(50%ethylene glycol D 50%water)-based hybrid nanofluid when Joule heating as well as Darcy-Forchheimer and Lorentz forces affect significantly

原文传递
导出
摘要 Falkner-Skan aspects are revealed numerically for a non-homogeneous hybrid mixture of 50%ethylene glycol-50%water,silver nanomaterials Ag,and molybdenum disul-fide nanoparticles MoS2 during its motion over a static wedge surface in a DarcyForchheimer porous medium by employing the modified Buongiorno model.The Brownian and thermophoresis mechanisms are included implicitly along with the thermophysical properties of each phase via the mixture theory and some efficient phenomenological laws.The present simulation also accounts for the impacts of nonlinear radiative heat flux,magnetic forces,and Joule heating.Technically,the generalized differential quadrature method and Newton-Raphson technique are applied successfully for solving the resulting nonlinear boundary layer equations.In a limiting case,the obtained findings are validated accurately with the existing literature outcomes.The behaviors of velocity,temperature,and nanoparticles volume fraction are discussed comprehensively against various governing parameters.As crucial results,it is revealed that the temperature is enhanced due to magnetic field,linear porosity,radiative heat flux,Brownian motion,thermophoresis,and Joule heating effects.Also,it is depicted that the hybrid nanoliquids present a higher heat flux rate than the monotype nanoliquids and liquids cases.Moreover,the surface frictional impact is minimized via the linear porosity factor.Furthermore,the surface heat transfer rate receives a prominent improvement due to the radiative heat flux inclusion.
出处 《Propulsion and Power Research》 SCIE 2023年第3期428-442,共15页 推进与动力(英文)
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部