期刊文献+

基于图卷积编码器的蒙汉神经机器翻译 被引量:1

MONGOLIAN AND CHINESE NEURAL MACHINE TRANSLATION BASED ON GRAPH CONVOLUTIONAL ENCODER
下载PDF
导出
摘要 基于神经网络模型的蒙汉机器翻译严格采用编码器-解码器的序列建模方式,不能有效利用句法信息以及语言的层次结构信息。为将句法结构信息融入蒙汉机器翻译以提高其翻译性能,提出在源语言端采用双编码器,同时对源句和由源句解析而来的句法依存树进行编码;由于蒙汉机器翻译中经常会出现未登录词问题,因此将使用字节对编码技术预处理蒙古语。为解决机器翻译中的过度矫正问题,在训练阶段,模型以一定的概率从正确标注的序列中和预测生成的序列中采样上下文单词。在120万蒙汉平行语料的实验中证明,该方法相较于传统的BiRNN和CNN,BLEU值分别提高了2.69和2.09。 Mongolian and Chinese machine translation based on neural network model strictly adopts encoder-decoder sequence modeling,which can not effectively use syntactic information and language hierarchy information.In order to integrate syntactic structure information into Mongolian-Chinese machine translation to improve its translation performance,this paper proposed to use a dual encoder on the source language side to encode the source sentence and the syntactic dependency tree derived from the source sentence at the same time.Due to the frequent occurrence of unregistered words in Mongolian Chinese machine translation,byte pair encoding technology was used to preprocess Mongolian language.In order to solve the problem of over-correction in machine translation,in the training phase,the model sampled context words from the correctly labeled sequence and the predicted sequence with a certain probability.Experiments on 1.2 million Mongolian-Chinese parallel corpus prove that compared with the traditional BiRNN and CNN,the BLEU value of the proposed method increased by 2.69 and 2.09 respectively.
作者 薛媛 苏依拉 仁庆道尔吉 石宝 李雷孝 Xue Yuan;Su Yila;Ren Qingdaoerji;Shi Bao;Li Leixiao(College of Information Engineering,Inner Mongolia University of Technology,Hohhot 010080,Inner Mongolia,China)
出处 《计算机应用与软件》 北大核心 2023年第10期70-75,89,共7页 Computer Applications and Software
基金 国家自然科学基金项目(61966028,61966027)。
关键词 依存句法树 图卷积编码 字节对编码 蒙汉机器翻译 Dependency-syntax tree Graph convolutional encoder Byte pair encoder Mongolian-Chinese machine translation
  • 相关文献

参考文献5

二级参考文献48

  • 1杨宪泽,雷开彬,吴守宪,张上游,宁爱华.一种句型转换和近似机器翻译方法及算法[J].计算机工程与科学,2005,27(11):66-68. 被引量:7
  • 2刘康龙,穆雷.语料库语言学与翻译研究[J].中国翻译,2006,27(1):59-64. 被引量:47
  • 3侯宏旭,刘群,那顺乌日图.基于实例的汉蒙机器翻译[J].中文信息学报,2007,21(4):65-72. 被引量:16
  • 4Wu D K. Stochastic inversion transduction grammars and bilingual parsing of parallel corpora. Computational Linguistics, 1997, 23(3): 377-403.
  • 5Chiang D. A hierarchical phrase-based model for statistical machine translation. In: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. Ann Arbor, Michigan: Association for Computational Linguistics, 2005. 263-270.
  • 6Liu Y, Liu Q, Lin S X. Tree-to-string alignment template for statistical machine translation. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Sydney, Australia: Association for Computational Linguistics. 2006. 609-616.
  • 7Liu Y, Huang Y, Liu Q, Lin S X. Forest-to-string statistical translation rules. In: Proceedings of the 45th Annual Meeting of the Association for Computational Linguistics. Prague, Czech Republic: Association for Computational Linguistics, 2007. 704-711.
  • 8Xiong D Y, Liu Q, Lin S X. Maximum entropy based phrase reordering model for statistical machine translation. In: Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics. Sydney, Australia: Association for Computational Linguistics, 2006. 521-528.
  • 9Galley M, Hopkins M, Knight K, Marcu D. What's in a translation rule? In: Proceedings of the 2004 Conference of the North American Chapter of the Association for Computational Linguistics. Boston, USA: Association for Computational Linguistics, 2004. 273-280.
  • 10Eisner J. Learning non-isomorphic tree mappings for machine translation. In: Proceedings of the 41st Annual Meeting on Association for Computational Linguistics. Sapporo, Japan: Association for Computational Linguistics, 2003. 205-208.

共引文献122

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部