期刊文献+

基于密度分区的出租车载客热点区域聚类分析 被引量:2

CLUSTER ANALYSIS OF HOT SPOTS FOR TAXI PASSENGERS BASED ON DENSITY ZONING
下载PDF
导出
摘要 基于城市居民出行的随机性和出租车行驶的机动性,对出租车轨迹数据进行载客热点区域的挖掘,得到城市居民出行规律。由于出租车轨迹数据密度分布不均匀,应用一般的聚类方法效果不佳,因此提出一种基于密度分区的聚类算法。该算法通过求取每个出租车上车点位置数据的局部密度,得到密度峰值点作为簇中心,实现对轨迹数据集基于密度的快速划分,得到不同密度的轨迹数据集,在此基础上进行二次聚类。实验结果表明,该算法可以有效识别不同密度的出租车载客热点区域,提高聚类结果的精确度。 Based on the randomness of urban residents' travel and the mobility of taxi driving,the hot spots of passenger carrying were excavated from the taxi trajectory data,and the travel rules of urban residents were obtained.Due to the uneven density distribution of taxi trajectory data,the general clustering method had a low clustering accuracy,so a clustering algorithm based on density zoning was proposed.By calculating the local density of the taxi pickup point location data,the algorithm obtained the peak density point as the cluster center,and realized the fast partition of the trajectory data set based on the density,and obtained the trajectory data set with different densities.On this basis,secondary clustering was carried out.The experimental result show that the clustering algorithm based on density partition can effectively identify the hot spots of taxi passengers with different densities and improve the accuracy of clustering result.
作者 任丹萍 刘琳 陈湘国 Ren Danping;Liu Lin;Chen Xiangguo(School of Information and Electrical Engineering,Hebei University of Engineering,Handan 056038,Hebei,China;Hebei Key Laboratory of Security&Protection Information Sensing and Processing,Handan 056038,Hebei,China)
出处 《计算机应用与软件》 北大核心 2023年第10期83-89,共7页 Computer Applications and Software
基金 河北省自然科学基金项目(F2018402198)。
关键词 出租车GPS轨迹数据 时空特征分析 密度聚类 Taxi GPS trajectory data Temporal and spatial characteristics analysis Density clustering
  • 相关文献

参考文献8

二级参考文献99

  • 1常菲,浦争艳,李明禄,李治洪.综合地图匹配定位技术研究[J].计算机工程与应用,2004,40(19):200-202. 被引量:7
  • 2何彬彬,方涛,郭达志.基于不确定性的空间聚类[J].计算机科学,2004,31(11):196-198. 被引量:8
  • 3武培兰.论运输市场经济平衡三要素[J].山西科技,2006(6):83-83. 被引量:16
  • 4贺玲,吴玲达,蔡益朝.数据挖掘中的聚类算法综述[J].计算机应用研究,2007,24(1):10-13. 被引量:225
  • 5孙吉贵,刘杰,赵连宇.聚类算法研究[J].软件学报,2008(1):48-61. 被引量:1073
  • 6HADJIELEFTHERIOU M,KOLLIOS G.Complex spatio-temporal pattern queries[A].International Conference on Very Large Data Bases,2005.877-888.
  • 7ZHOU X,SHEN H T,LIU Q,et al.A hybrid prediction model for moving objects[A].IEEE International Conference on Data Engineering[C].2008.70-79.
  • 8SAKR M A,G TING R H.Spatiotemporal pattern queries[J].Geoinformatica,2011,15(3):497-540.
  • 9GUDMUNDSSON J,KREVELD M V,SPECKMANN B.Efficient detection of motion patterns in spatio-temporal data sets[A].Proceedings of International Symposium of Acm Geographic Information Systems[C].2004.250-257.
  • 10JEUNG H,SHEN H T,ZHOU X.Convoy queries in spatiotemporal databases[A].IEEE 24th International Conference On Data Engineering[C].2008.1457-1459.

共引文献229

同被引文献25

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部