期刊文献+

改进成分分析的差分隐私高维数据发布方法

DIFFERENTIAL PRIVACY HIGH-DIMENSIONAL DATA PUBLISHING METHOD BASED ON IMPROVED COMPONENT ANALYSIS
下载PDF
导出
摘要 针对高维数据发布中“维度灾难”所导致发布结果可用性较差的问题,提出一种改进成分分析的差分隐私高维数据发布方法ICAHDP。ICAHDP通过引入属性重要度来优化PCA,利用优化算法对数据进行降维,减少时间和空间的开销。该算法在数据发布的过程中引入基于互信息的评价机制,确定最优的主成分个数。考虑到高维数据中可能存在多个敏感属性,ICAHDP引入敏感属性偏好,结合最优匹配理论,设计敏感属性分级保护策略来满足个性化的差分隐私保护策略。实验表明,ICAHDP不仅保证了发布数据的隐私性,而且很大程度地提升了数据的准确性和实用性。 Aiming at the problem of poor availability of publishing results caused by "the curse of dimensionality" in high-dimensional data publishing,we present a privacy preserving data publishing with improved component analysis method(ICAHDP).ICAHDP improved the principal component analysis(PCA) by employing the attribute importance,and reduced the dimension of the data with the improved PCA,which reduced the time and space cost.ICAHDP introduced the evaluation mechanism based on mutual-information into data release,which determined the optimal quantities.Considering the existence of multi-sensitive attributes in high-dimensional data,ICAHDP introduced the sensitivity preference,combined the optimal matching theory,and designed the sensitive attribute hierarchical protection strategy.Extensive experimental results demonstrate that ICAHDP not only guarantees the privacy of published dataset,but also significantly improves the accuracy and data utility.
作者 褚治广 张兴 张青云 李晓会 李万杰 Chu Zhiguang;Zhang Xing;Zhang Qingyun;Li Xiaohui;Li Wanjie(School of Electronics and Information Engineering,Liaoning University of Technology,Jinzhou 121001,Liaoning,China)
出处 《计算机应用与软件》 北大核心 2023年第10期337-344,共8页 Computer Applications and Software
基金 辽宁省自然科学基金项目(20170540434) 国家自然科学基金项目(61802161)。
关键词 高维数据 主成分优化 差分隐私 互信息 评价机制 High-dimensional-data Principal component analysis optimization Differential privacy Mutual information Evaluation mechanism
  • 相关文献

参考文献1

二级参考文献43

  • 1HAN J, KAMBER M, PEI J. Data Mining: Concepts and Tech-niques [M]. Morgan kaufmann, 2006.
  • 2DWORK C. Differential privacy[A]. Proc of the 33rd InternationalColloquium on Automata, Languages and Programniing[C]. Berlin:Spinger-Verlag,2006.
  • 3BLUM A, DWORK C, McSHERRY F,et al. Practical privacy: theSuLQ framework[A] .Proc of the 24th ACM SIGMOD InternationalConference on Management of Data/Principles of Database Sys-tems[C]. NewYork: ACM Press, 2005.128-138.
  • 4BLUM A,LIGETT K, ROTH A. A Learning theory approach tonon-interactive database privacy [A]. Proc of the 40th Annual ACMSymposium on Theory of Computing(STOC)[C]. Victoria, BritishColumbia, Canada, 2008.351-360.
  • 5DWORK C. A firm foundation for private data analysis[J]. Commu-nications of the ACM, 2011, 54(1):86-95.
  • 6NGUYEN H H, KIM J, KIM Y. Differential privacy in practice [J].Journal of Computing Science and Engineering, 2013,7(3): 177-186.
  • 7DWORK C, MCSHERRY F, NISSIM K, et al Calibrating noise tosensitivity in private data analysis[A]. TCC[C]. 2006.265-284.
  • 8MCSHERRY F,TALWAR K. Mechanism design via differentialprivacy[A]. FOCS[C]. 2007.94-103.
  • 9DWORK C, NAOR M,VADHAN S. The privacy of the analyst andthe power of the state[A]. 2012 IEEE 53rd Annual Symposium onFoundations of Computer Science (FOCS)[C]. 2012.400-409.
  • 10GHOSH A, ROUGHGARDEN T, SUNDARARAJAN M. Universallyutility-maximizing privacy mechanisms[A]. Proceedings of the 41stAnnual ACM Symposium on Theory of Computing[C].ACM, 2009.351-360.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部