摘要
Primary and secondary growth of the tree stem are responsible for corresponding increases in trunk height and diameter.However,our molecular understanding of the biological processes that underlie these two types of growth is incomplete.In this study,we used single-cell RNA sequencing and spatial transcriptome sequencing to reveal the transcriptional landscapes of primary and secondary growth tissues in the Populus stem.Comparison between the cell atlas and differentiation trajectory of primary and secondary growth revealed different regulatory networks involved in cell differentiation from cambium to xylem precursors and phloem precursors.These regulatory networks may be controlled by auxin accumulation and distribution.Analysis of cell differentiation trajectories suggested that vessel and fiber development followed a sequential pattern of progressive transcriptional regulation.This research provides new insights into the processes of cell identity and differentiation that occur throughout primary and secondary growth of tree stems,increasing our understanding of the cellular differentiation dynamics that occur during stemgrowth in trees.
基金
supported by the National Natural Science Foundation of China(32130072)
the Chinese Academy of Sciences’Strategic Priority Research Program(XDB27020104)
the National Key Research and Development Program(2021YFD2200204).