摘要
缺陷微小微弱、数据样本规模不足等是制约太阳电池质量检测技术快速发展的瓶颈问题。因此,该文提出一种用于生成太阳电池缺陷图像的生成对抗网络模型FAGAN。该方法先在源域公开道路数据集上进行模型预训练提取跨域底层视觉特征,以提升FAGAN在目标域生成缺陷形式的多样性;然后设计了有效通道空间注意力ECSA,在空间与通道两个维度对缺陷特征进行增强,以提升微小微弱缺陷生成样本的质量。实验结果表明:该文提出的方法所生成的太阳电池缺陷图像的性能评价指标FID优于现有的梯度惩罚Wasserstein距离生成对抗网络(WGAN-GP)、深度卷积生成对抗网络(DCGAN)、循环生成对抗网络(CycleGAN)和样式生成对抗网络(StyleGAN)。
Small and weak defects and insufficient dataset are the bottlenecks problems which restrict the rapid development of solar cells quality detection technology.Therefore,this paper proposes FAGAN for generating defect images of solar cells.This method firstly performs model pre-training on the source domain open road dataset to extract cross-domain underlying visual features,so as to improve the diversity of defect forms generated by FAGAN on the target domain;then,ECSA is designed to enhance the defect features in two dimensions of space and channel,so as to improve the quality of small and weak defect samples.The experiments show that the FID of the solar cell defect images generated by the proposed method is better than those of the existing gradient penalty Wasserstein distance generative adversarial network(WGAN-GP),deep convolution generative adversarial network(DCGAN),cycle generative adversarial network(CycleGAN)and style generative adversarial network(StyleGAN).
作者
孙玲俊
毛经宇
刘坤
Sun Lingjun;Mao Jingyu;Liu Kun(School of Artificial Intelligence,Hebei University of Technology,Tianjin 300130,China;Guodian United Power Technology Co.,Ltd.,Beijing 100039,China)
出处
《太阳能学报》
EI
CAS
CSCD
北大核心
2023年第9期78-84,共7页
Acta Energiae Solaris Sinica
基金
国家自然科学基金(62173124)
河北省自然科学基金(F2019202305)。
关键词
迁移学习
太阳电池
图像处理
卷积神经网络
生成对抗网络
注意力
transfer learning
solar cells
image processing
convolutional neural networks
generative adversarial network
attention