期刊文献+

钙钛矿高转换效率光伏材料合成技术进展综述

Progress in Synthesis and Application of Perovskite Photovoltaic Materials
下载PDF
导出
摘要 光伏发电系统具有显著的能源、环保与经济效益,能显著降低碳排放,未来将成为世界能源供应的主体。随着社会对能源绿色化意识的逐渐提高和化工合成技术的进步,高光电转换效率太阳能电池的研究和开发已成为当下研究热点。其中,钙钛矿(ABX3)材料由于其光电转换效率高、成本低以及光学可调性强等优点而成为新一代太阳能电池最有前途的材料之一。重点介绍钙钛矿太阳能电池发电原理与发展现状,并从不同化学成分角度分析比较了不同类型太阳能电池的技术优势和发展前景,包括有机-无机杂化钙钛矿太阳能电池、无机钙钛矿太阳能电池、纳米尺度无机钙钛矿材料及其他类型太阳能电池材料,为下一步钙钛矿高转换效率光伏材料合成技术发展路线提供了参考。 Photovoltaic power generation has significant energy,environmental and economic benefits,and can significantly reduce carbon emissions.It will become the main source of global energy supply in the future.With the gradual improvement of society's awareness of energy greening and the advancement of chemical synthesis technology,the research and development of high photoelectric conversion efficiency solar cells has become a current research hotspot.Among them,perovskite(ABX3)materials have become one of the most promising materials for new-generation solar cells due to their high photoelectric conversion efficiency,low cost,and strong optical tunability.The principle and development status of perovskite solar cells was introduced.Then,the technical advantages and development prospects of different types of solar cells from the perspective of different chemical compositions were analyzed and compared,including organic-inorganic hybrid perovskite solar cells,inorganic perovskite solar cells,nanoscale inorganic perovskite materials and other types of solar cell materials,which provide a reference for the next step in the development of perovskite high conversion efficiency photovoltaic materials synthesis technology.
作者 程方 CHENG Fang(Shandong Electric Power Industry Association,Jinan 250100,China)
出处 《山东电力技术》 2023年第10期18-27,共10页 Shandong Electric Power
关键词 钙钛矿太阳能电池 光伏 光电转换效率 perovskite solar cells photovoltaic photoelectric conversion efficiency
  • 相关文献

参考文献15

二级参考文献219

  • 1李钟华,张秀媚,杨亭阁.纳米技术与纳米材料[J].化工进展,1996,15(2):20-22. 被引量:25
  • 2Chapin D M, Fuller C S, Pearson G L. A new Silicon p-n junction photocell for converting solar radiation into electrical power. J Appl Phys, 1954, 25:676-677.
  • 3Prince M B. Silicon solar energy converters. J Appl Phys, 1955, 26:534-540.
  • 4Chung B C, Virshup G F, Hikido S, Kaminar N R. 27.6% efficiency (1 sun, air mass 1.5) monolithic A10.37Ga0.63As/GaAs two-junction cascade solar cell with prismatic cover glass. Appl Phys Lett, 1989, 55:1741-1743.
  • 5O'Regan B, Gratzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 1991, 353: 737-740.
  • 6Gratzel M. Photoelectrochemical cells. Nature, 2001, 414:338-344.
  • 7Kallmann H, Pope M. Photovoltaic effect in organic crystals. J Chem Phys, 1959, 30:585-586.
  • 8Tang C W. Two-layer organic photovoltaic cell. Appl Phys Lett, 1986, 48:183-185.
  • 9Sariciftci N S, Smilowitz L, Heeger A J, Wudl F. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science, 1992, 258:1474-1476.
  • 10Sariciftci N S, Braun D, Zhang C, Srdanov V I, Heeger A J, Stucky G, Wudl F. Semiconducting polymer-buckminsterfullerene hetero- junctions: Diodes, photodiodes, and photovoltaic cells. Appl Phys Lett, 1993, 62:585-587.

共引文献64

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部