期刊文献+

基于Retina-Face的人眼关键点检测算法研究

Research on Human Eye Key Point Detection Algorithm Based on Retina Face
下载PDF
导出
摘要 应用PERCLOS P80方法检测人体疲劳时,需要对人脸部,尤其是眼部的关键点进行准确而快速的定位,针对上述问题提出一种基于Retina-Face的人眼关键点检测算法。在分析Retina-Face的网络模型结构基础上,结合疲劳检测的相关场景,有针对性地对网络模型进行改进,包括:数据迁移学习、网络结构重新设计、Gabor特征提取等方法。该算法在300W数据集、自采数据集上,在检测精度和速度方面均达到较好的效果,在保证时效性的同时,提高了眼部关键点检测的准确率,也为基于计算机视觉的疲劳检测打下了基础。 When PERCLOS p80 method is used to detect human fatigue,it needs to accurately and quickly locate the key points of human face,especially the eyes.Aiming at this problem,a human eye key point detection algorithm based on retina face is proposed.Based on the analysis of retina face's network model structure,combined with the relevant scenarios of fatigue detection,the network model was improved pertinently,including data migration learning,network structure redesign,Gabor feature extraction and other methods.The algorithm has achieved good results in detection accuracy and speed on 300W data sets and self collected data sets.While ensuring timeliness,it improves the accuracy of eye key point detection,and also lays a foundation for fatigue detection based on computer vision.
作者 陈亮 郑伟 CHEN Liang;ZHENG Wei(School of Electronic Information Engineering,Beijing Jiaotong University,Beijing 100044,China;National Research Center of Railway Safety Assessment,Beijing Jiaotong University,Beijing 100044,China;Collaborative Innovation Center of Railway Traffic Safety,Beijing Jiaotong University,Beijing 100044,China)
出处 《计算机仿真》 北大核心 2023年第9期213-216,354,共5页 Computer Simulation
基金 中国国家铁路集团有限公司科技研究开发计划项目(N2021Z007) 中国铁道科学研究院集团有限公司科技研究开发计划项目(2020YJ098) 中央高校基本科研业务费专项资金资助(科技领军人才团队项目)(2022JBXT003)。
关键词 深度学习 特征金字塔 特征提取 眼部关键点 Deep learning Feature pyramid Feature extraction Eye keys-points
  • 相关文献

参考文献4

二级参考文献94

  • 1Ben-David S,Blitzer J,Crammer K,Pereira F.Analysis of representations for domain adaptation.In:Platt JC,Koller D,Singer Y,Roweis ST,eds.Proc.of the Advances in Neural Information Processing Systems 19.Cambridge:MIT Press,2007.137-144.
  • 2Blitzer J,McDonald R,Pereira F.Domain adaptation with structural correspondence learning.In:Jurafsky D,Gaussier E,eds.Proc.of the Int’l Conf.on Empirical Methods in Natural Language Processing.Stroudsburg PA:ACL,2006.120-128.
  • 3Dai WY,Xue GR,Yang Q,Yu Y.Co-Clustering based classification for out-of-domain documents.In:Proc.of the 13th ACM Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM Press,2007.210-219.[doi:10.1145/1281192.1281218].
  • 4Dai WY,Xue GR,Yang Q,Yu Y.Transferring naive Bayes classifiers for text classification.In:Proc.of the 22nd Conf.on Artificial Intelligence.AAAI Press,2007.540-545.
  • 5Liao XJ,Xue Y,Carin L.Logistic regression with an auxiliary data source.In:Proc.of the 22nd lnt*I Conf.on Machine Learning.San Francisco:Morgan Kaufmann Publishers,2005.505-512.[doi:10.1145/1102351.1102415].
  • 6Xing DK,Dai WY,Xue GR,Yu Y.Bridged refinement for transfer learning.In:Proc.of the Ilth European Conf.on Practice of Knowledge Discovery in Databases.Berlin:Springer-Verlag,2007.324-335.[doi:10.1007/978-3-540-74976-9_31].
  • 7Mahmud MMH.On universal transfer learning.In:Proc.of the 18th Int’l Conf.on Algorithmic Learning Theory.Sendai,2007.135-149.[doi:10,1007/978-3-540-75225-7_14].
  • 8Samarth S,Sylvian R.Cross domain knowledge transfer using structured representations.In:Proc.of the 21st Conf.on Artificial Intelligence.AAAI Press,2006.506-511.
  • 9Bel N,Koster CHA,Villegas M.Cross-Lingual text categorization.In:Proc.of the European Conf.on Digital Libraries.Berlin:Springer-Verlag,2003.126-139.[doi:10.1007/978-3-540-45175-4_13].
  • 10Zhai CX,Velivelli A,Yu B.A cross-collection mixture model for comparative text mining.In:Proc.of the 10th ACM SIGKDD Int’l Conf.on Knowledge Discovery and Data Mining.New York:ACM,2004.743-748.[doi:10.1145/1014052.1014150].

共引文献498

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部