期刊文献+

Chebyshev-Padé型极点降阶及传输线方程应用

Chebyshev-Padé Type Pole Order Reduction and Application of Transmission Line Equation
下载PDF
导出
摘要 为提高工程应用中用于输入输出系统的渐近波形估计方法的模拟精度,提出了Chebyshev-Padé型极点降阶算法。利用Chebyshev函数系和幂级数系的关系,将传递函数展开为Chebyshev级数,获得广义矩。通过匹配广义矩得到降阶后系统传递函数的极点,根据极点是单重和多重的不同情形,分别使用Chebyshev-Padé型单重极点算法和Chebyshev-Padé型多重极点算法对其降阶。进一步由广义矩方程组求解出极点对应的留数,可得降阶系统传递函数的表达式。针对传输线模型给出了Chebyshev-Padé型极点降阶算法的具体步骤。最后,数值算例表明以上算法能够在很少的降阶阶数下提高模型的近似精度。 In order to improve the simulation accuracy of the asymptotic waveform estimation method for inputoutput systems in engineering applications,a Chebyshev-Pade type pole order reduction algorithm is proposed.By using the relationship between the Chebyshev function series and the power series,the transfer function was expanded into Chebyshev series to obtain the generalized moments.According to the different cases where the poles are single and multiple,the order was reduced by the Chebyshev-Pade type single pole order reduction and multiple pole order reduction algorithm,respectively.Further,the residues were solved by the generalized moments equations,and the expression of the transfer function of the reduced order system was obtained.Moreover,the specific steps of this algorithm were given for the transmission line model.Finally,numerical examples show that the algorithm can improve the approximation accuracy with a low reduced order.
作者 刘萌 苗真 蒋耀林 LIU Meng;MIAO Zhen;JIANG Yao-lin(College of Mathematics and System Sciences,Xinjiang University,Urumqi Xinjiang 830046,China;School of Mathematics and Statistics,Xi'an Jiaotong University,Xi'an,Shaanxi 710049,China)
出处 《计算机仿真》 北大核心 2023年第9期268-273,共6页 Computer Simulation
基金 国家自然科学基金(11871393) 陕西省重点研发计划国际合作项目(2019KWZ-08)。
关键词 渐近波形估计 模型降阶 有理逼近 矩匹配 传输线方程 Asymptotic waveform estimation Model order reduction Rational approximation Moment matching Transmission line equation
  • 相关文献

参考文献1

二级参考文献11

  • 1I M Jaimoukha, E M Kasenally. Implicitly restarted Krylov sub- space methods for stable partial realizations [ J ]. SIAM J. Matrix Anal. Appl. 1997,18(3):633-652.
  • 2A Vandendorpe, P Van Dooren. Krylov techniques for model re- duction of second order systems [ R ]. Tech. Rep. , CESAME, Universit'e catholique de Louvain, 2004.
  • 3C C Chu, M H Lai, W S Feng, Model order reductions for MIMO systems using global Krylov subpace methods [ J]. Math. Comput. 2008,79:1153 - 1164.
  • 4J M A Scherpen. Balancing for nonlinear systems[ J]. Syst. Con- tr. Lett. 1993,21 : 143 - 153.
  • 5L Knnekaert, D De Zutter. Stable Laguerre - SVD reduced - order modeling[J]. IEEE Trans. Circuits Syst. I-Regul. Pap. 2003, 50(4) :576 -579.
  • 6Y Ebihara, T Hagiwar. On H model reduction using LMIs[ J]. IEEE Trans. Automat. Control, 2004:1187 - 1191.
  • 7K M Grigoriadis, Optimal H model reduction via linear matrix in- equalities: continuous -and discrete -time case[J]. Syst. Contr. Lett. 1995,26(5) :321 -333.
  • 8K Gallivan, P Van Dooren, P A Absil. H2 - optimal model reduc- tion with higherorder poles [ J ]. SIAM J. Matrix Anal. Appl. 2010,31 : 2738 -2753.
  • 9S Gugercin, A C Antoulas, C Beattie. H2 model reduction for large - scale linear dynamical system[J]. SIAM J. Matrix Anal. Appl. 2008,30:609 - 638.
  • 10B Anic, C Beattie, S Gugercin, A C Antoulas. Interpolatory weighted - H2 model reduction [ J ]. Automatic. 20! 3,49 : 1275 - 1280.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部