期刊文献+

基于改进YOLOv4的地板缺陷检测算法

Floor Defect Detection Algorithm Based on Improved YOLOv4
下载PDF
导出
摘要 为解决现有地板表面纹理类缺陷、小目标缺陷检测效果差的问题,提出了一种基于改进-YOLOv4的地板表面缺陷检测方法。修改了YOLOv4的CSPDreknet53特征提取网络输出,增加了104×104的特征层输出,在保持原有的特征层的基础上,增加了对小目标检测的特征层,增加特征层的上采样融合和下采样融合,使特征提取的更加充分,减少信息的丢失,对小目标检测更为精准。对整理好的数据集进行改进后的K-means聚类分析,重新设置了先验框的数量和大小。最后使用改进型-YOLOv4训练出的模型进行mAP计算,实验结果表明,改进型-YOLOv4的mAP达到了89.07%,比改进前提升了5.77%,分类准确率达到了94.62%,能够准确且快速的识别出地板的表面缺陷。 In order to solve the problem of poor detection effect of existing floor surface texture defects and small target defects,a floor surface defect detection method based on an improved-YOLOv4 is proposed.the output of the CSPDreknet53 feature extraction network of YOLOv4 was modified,and the output of the 104x104 feature layer was increased.On the basis of maintaining the original feature layer,the feature layer for small target detection was added,and the up-sampling fusion and down-sampling of the feature layer were added.Sampling fusion makes the feature extraction more fully,reduces the loss of information,and detects small targets more accurately.The improved Kmeans clustering analysis was performed on the sorted data set,and the number and size of a priori boxes were reset.Finally,the model trained by the improved-YOLOv4 was used to calculate the mAP.The experimental results show that the mAP of the improved-YOLOv4 reaches 89.07%,which is 5.77%higher than before the improvement,and the classification accuracy rate reaches 94.62%,which can be accurate and fast.Identify the surface defects of the floor.
作者 陈浩栋 张弛 孙伟波 李红军 CHEN Hao-dong;ZHANG Chi;SUN Wei-bo;LI Hong-jun(College of Mechanical Engineering and Automation,Wuhan Textile University,Wuhan Hubei 430200,China)
出处 《计算机仿真》 北大核心 2023年第9期502-508,共7页 Computer Simulation
基金 国家自然科学基金资助项目(51875414) 湖北省教育厅重点项目(D20191701)。
关键词 地板表面缺陷 深度学习 目标检测 小目标 分类 Floor surface defects Deep learning Target detection Small targets classification
  • 相关文献

参考文献9

二级参考文献90

  • 1金立生,王荣本,高龙,郭烈.基于区域生长的智能车辆阴影路径图像分割方法[J].吉林大学学报(工学版),2006,36(B03):132-135. 被引量:6
  • 2白雪冰,邹丽晖.基于灰度-梯度共生矩阵的木材表面缺陷分割方法[J].森林工程,2007,23(2):16-18. 被引量:11
  • 3张健 杨丽丽 鲍际平.基于蚁群算法的强化木地板表面缺陷图像处理技术研究.仪器仪表学报,2008,29(4):109-112.
  • 4RUZA Gonzalo A, PABLO A Estevez, PABLO A Ramirez. Auto- mated visual inspection system for wood defect classification using computational intelligence techniques[ J]. International Journal of Systems Science, 2009, 40(2) :163 -172.
  • 5PHAM D T, ALCOCK R J. Automated grading and defect detec- tion : A Review[ J]. Forest Products Journal, 1998,48 (3) : 34 - 42.
  • 6IRENE Y H G, RAUL Vicen. Automatic classification of wood de- fects using support vector machines[ C ]//International Conference of Computer Vision and Graphics, November 10 - 12, 2008,War- saw, Poland. 2008:356 - 367.
  • 7PHAM D T, ALCOCK R J. Automated visual inspection of wood boards: selection of features for defect classification by a neural network[J]. Journal of Process Mechanical Engineering, 1999, 213(4) :231 -245.
  • 8RUZA Gonzalo A, PABLO A Estrvez, PEREZ Claudio. A neuro- fuzzy color image segmentation method for wood surface defect de- tection[ J]. Forest Products Journal, 2005,55 (4) :52 - 58.
  • 9OLLI Silven, MATrI Niskanen, HANNU Kauppinen. Wood in- spection with non - supervised clustering[ J]. Machine Vision and Applications, 2003 13 (2) : 275 - 285.
  • 10ZHANG Yizhuo, TONG Chuan, Wood board defects sorting based on method of possibilistic C-means improved support vector data description. Applied Mechanics and Materials, 2012,128 - 129 : 1288 - 1291.

共引文献510

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部