期刊文献+

模型数据混合驱动的水声器材防御决策方法

Underwater Acoustic Equipment Defense Decision Method Driven by Both Model And Data
下载PDF
导出
摘要 基于模型的计算机仿真技术在水中对抗战法推演、方案制定等应用中至关重要。但是由于战场输入数据维数高且模型复杂度高,基于模型仿真方法很难从算法、计算优化的层面上满足决策实时性要求。基于仿真模型产生的大量仿真样本数据,采用学习算法拟合求解最小极值点,缩小决策空间,再与传统仿真模型相结合以提高过程仿真优化效率;实验表明,采用模型与数据驱动混合学习模型在决策相对较优条件下可以将决策时间缩短到原来的6%。在积累了大量作战仿真、训练数据的今天,采用机器学习算法代替传统基于模型算法,是满足实时性和决策准确率的新思路。 Model based computer simulation technology is very important in the application of tactics deduction and scheme formulation in the process of underwater confrontation.However,due to the high dimension of battlefield input data and high model complexity,it is difficult for the existing model-based simulation methods to meet the real-time requirements of decision-making from the aspects of algorithm and calculation optimization.Therefore,this paper considers a large number of simulation sample data generated based on the simulation model.Firstly,the learning algorithm was used to fit and solve the minimum extreme point to reduce the decision space,and then combined with the traditional simulation model to improve the efficiency of process simulation optimization.Experiments show that the hybrid learning algorithm driven by model and metadata can reduce the time of model-based decision-making by 94% under relatively optimal decision-making conditions.With the accumulation of a large number of combat simulation and training data,using machine learning algorithm to replace the traditional model-based algorithm is a new idea to meet the real-time and decision accuracy.
作者 杨静 黄金才 张驭龙 郭力强 YANG Jing;HUANG Jin-cai;ZHANG Yu-long;GUO Li-qiang(National University of Defense and Technology,Changsha Hunan 410073,China;Navy Submarine College,Qingdao Shandong 266071,China)
出处 《计算机仿真》 北大核心 2023年第8期24-29,135,共7页 Computer Simulation
基金 国家自然科学基金项目(71701205)。
关键词 水中对抗 数据与模型混合驱动 防御决策 元训练算法 不均衡数据 Underwater confrontation Data and model hybrid drive Defense decisions Meta training algorithm Imbalanced data
  • 相关文献

参考文献4

二级参考文献49

  • 1罗德林,段海滨,吴顺详,李茂青.基于启发式蚁群算法的协同多目标攻击空战决策研究[J].航空学报,2006,27(6):1166-1170. 被引量:49
  • 2罗德林,王彪,龚华军,吴文海,沈春林.基于SAGA的协同多目标攻击决策[J].哈尔滨工业大学学报,2007,39(7):1154-1158. 被引量:14
  • 3黄长强,翁兴伟,王勇,等.多无人机协同作战技术[M].北京:国防工业出版社,2012.
  • 4Cummings M L, Mitchell P J. Automated scheduling decision support for supervisory control of multiple UAVs[J]. J of Aerospace Computing Information and Communication, 2006, 3(6): 294-308.
  • 5Narayana R P, Sudesh K K, Girija G. Situation and threat assessment in bvr combat[C]. AIAA Guidance, Navigation and Control Conference. Portland: AIAA Press, 2011: 1-6.
  • 6Nickens O, Gavin T. Threat assessment using bayesian networks[C]. Proc of the 6th Int Conf of Information Fusion. Queensland, 2003:1102-1109.
  • 7Austin F, Carbone G, Michael F, et al. Game theory for automated maneuvering during air-to-air combat[J]. J of Guidance, 1990, 13(6): 1143-1147.
  • 8Khatib O. Real-time obstacle avoidance for manipulators and mobile robots[J]. Int J of Robotics Research, 1986, 5(1): 90-98.
  • 9Moscato P. On evolution, search, optimization, genetic algorithms and martial arts: Towards memetic algorithms[R]. Pasadena: California Institute of Technology, 1989.
  • 10Ellabaan M. Discovering unique, low-energy transition states using evolutionary molecular memetic computing[J]. IEEE Computational Intelligence Magazine, 2013, 8(3): 54-63.

共引文献47

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部