期刊文献+

一种高速并联机器人的运动学建模与轨迹规划仿真 被引量:2

Kinematics modeling and trajectory planning simulation of high speed parallel robot
下载PDF
导出
摘要 以一种可实现高速运动的4自由度并联机器人为研究对象,采用矢量法建立了机器人运动学逆解模型,并提出了具有显示表达式的运动学正解解析解法,因无需迭代而具有较高的计算效率。采用4种运动规律分别规划末端抓放路径,并对比分析了关节角加速度与角跃度随时间的变化规律。在此基础上,提出了基于SAMCEF的机器人刚柔耦合仿真流程,并分析了不同运动规律的残余振动幅值变化,为优选可兼顾关节驱动力矩平滑性与末端残余振动收敛性的运动规律提供了解决思路。 In this article,with the focus on the 4-DOF high-speed parallel robot,the vector method is used to set up the inverse-kinematics model,and the analytical algorithm of forward kinematics with explicit expression is worked out,which has high computational efficiency because iteration is not needed.The grasping and releasing paths at the end are planed with the help of four motion rules,and the laws of each joint's angular acceleration and jerk changing with time are compared and analyzed.Then,the rigid-flexible coupling simulation process for this robot based on SAMCEF is proposed and the amplitude variation of residual vibration in line with different motion laws is simulated.This study provides ideas for selecting the motion laws that seek a balance between the smoothness of the joint's driving torque and the convergence of residual vibration at the end.
作者 张家琪 马跃 张智涛 李彬 刘祺 ZHANC Jiaqi;MA Yue;ZHANG Zhitao;LI Bin;LIU Qi(Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control,School of Mechanical Engineering,Tianjin University of Technology,Tianjin 300384;National Demonstration Center for Experimental Mechanical and Electrical Engineering Education,School of Mechanical Engineering,Tianjin University of Technology,Tianjin 300384;Tianjin Yangtian Technology Co.,Ltd.,Tianjin 300190)
出处 《机械设计》 CSCD 北大核心 2023年第9期43-48,共6页 Journal of Machine Design
基金 国家自然科学基金项目(52205029,52205030) 天津理工大学大学生创新创业训练计划项目(202010060010)。
关键词 高速并联机器人 运动学分析 轨迹规划 high-speed parallel robot kinematic analysis trajectory planning
  • 相关文献

参考文献1

二级参考文献12

  • 1CHOI Y K, PARK J H, KIM H S, et al. Optimal trajectory planning and sliding mode control for robots using evolution strategy[J]. Robotica, 2000, 18(8): 423-428.
  • 2LIN C S, CHANG P R, LUH J Y S. Formulation and optimization of cubic polynomial joint trajectories for industrial robots[J]. IEEE Trans. Automat. Contr., 1983, 28(12): 1 066-1 074.
  • 3GASPARETTO A, ZANOTTO V. A technique for time-jerk optimal planning of robot trajectories[J]. Robotics and Computer-Integrated Manufacturing, 2008, 24 (6): 415-426.
  • 4SHILLER Z. Time-energy optimal control of articulated systems with geometric path constraints[J]. Trans. ASME J. Dynam. Syst. Meas. Control, 1996, 118: 139-143.
  • 5SARAMAGO S F P, STEFFEN V J R. Optimization of the trajectory planning of robot manipulators taking into account the dynamics of the system[J]. Mech. Math. Theory, 1998, 33(7): 883-894.
  • 6SARAMAGO S F P, STEFFEN V J R. Optimal trajectory planning of robot manipulators in the presence of moving obstacles[J]. Mech. Math. Theory, 2000, 35(8): 1 079-1 094.
  • 7CHETTIBI T, LEHTIHET H E, HADDAD M, et al. Minimum cost trajectory planning for industrial robots[J]. European Journal of Mechanics A/Solids, 2004, 23(3): 703-715.
  • 8LUO X, FAN X P, ZHANG H, et al. Integrated optimization of trajectory planning for robot manipulators based on intensified evolutionary programming[C]//Proc. International Conference on Robotics and Biomimetics, Shenyang, China. Los Angeles: IEEE, 2004: 546-551.
  • 9PIAZZI A, VISIOLI A. Global minimum-time trajectory planning of mechanical manipulators using interval analysis[J]. Int. J. Control, 1998, 71(4): 631-652.
  • 10RUNARSSON T P, YAO X. Stochastic ranking for constrained evolutionary optimization[J]. IEEE Transactions on Evolutionary Computation, 2000, 4(9): 284-294.

共引文献139

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部