期刊文献+

ZIF衍生Fe_(3)O_(4)@NC/石墨烯锂离子电池负极材料研究

Research on ZIF derived Fe_(3)O_(4)@NC/graphene composite anode material for lithium-ion batteries
下载PDF
导出
摘要 为了改善Fe_(3)O_(4)作为锂离子电池负极材料时循环稳定性差的问题,以铁基沸石咪唑酯框架结构材料(Fe-ZIF)为前驱体,使用多巴胺通过聚合反应与其复合,再与石墨烯通过静电吸附作用组装,经过煅烧碳化,制备了Fe_(3)O_(4)@NC/G复合材料。研究结果表明,多巴胺与石墨烯的引入有效提高了Fe_(3)O_(4)在充放电过程中的电化学稳定性。在0.1 A·g^(-1)电流密度下,充放电循环30圈,Fe_(3)O_(4)@NC/G的放电比容量为1005.6 mAh·g^(-1)。当电流密度为2 A·g^(-1)时,经过300圈循环,其放电比容量仍有838.3 mAh·g^(-1)。Fe_(3)O_(4)@NC/G复合材料优异的电化学性能归因于独特的结构设计,这对其他负极材料的构筑提供了一定的参考价值。 To improve the cycling stability of Fe_(3)O_(4)as a lithium-ion battery anode material,Fe-Zeolitic imidazolate frameworks(Fe-ZIF)was used as a precursor,and dopamine was coupled to it through a polymerization reaction.The resulting material was then assembled with graphene through electrostatic adsorption,followed by calcination and carbonization to prepare Fe_(3)O_(4)@NC/G composite materials.Research results show that the introduction of dopamine and graphene effectively improves the electrochemical stability of Fe_(3)O_(4)during charge and discharge processes.At current density of 0.1 A·g^(-1),after 30 cycles of charge and discharge,the discharge specific capacity of Fe_(3)O_(4)@NC/G is 1005.6 mAh·g^(-1).When the current density is 2 A·g^(-1),after 300 cycles,the discharge specific capacity remains 838.3 mAh·g^(-1).The excellent electrochemical properties of Fe_(3)O_(4)@NC/G composites are attributed to their unique structural design,which provides some reference value for the construction of other anode electrode materials.
作者 张亚婷 索轲 刘国阳 朱由余 张娜娜 ZHANG Yating;SUO Ke;LIU Guoyang;ZHU Youyu;ZHANG Nana(School of Chemistry and Chemical Engineering,Xi􀆳an University of Science and Technology,Xi􀆳an 710054,China;Key Laboratory of Coal Resources Exploration and Comprehensive Utilization,Ministry of Natural Resources,Xi􀆳an 710021,China)
出处 《电子元件与材料》 CAS 北大核心 2023年第9期1033-1039,共7页 Electronic Components And Materials
基金 国家自然科学基金(U1810113,U1203292)。
关键词 锂离子电池 负极材料 Fe_(3)O_(4) 石墨烯 LIBs anode material Fe3 O4 graphene
  • 相关文献

参考文献2

二级参考文献21

  • 1Lacis A A, Schmidt G A, Rind D, et al. Atmospheric CO2: Principal control knob governing Earth's temperature[J]. Science, 2010, 330(6002): 356-359.
  • 2Das S, Daud W M A W. A review on advances in photocatalysts towards CO2 conversion[J]. Rsc Advances, 2014, 4(40): 20856-20893.
  • 3Sastre F, Puga A V, Liu L, et al. Complete photocatalytic reduction of CO2 to methane by H2 under solar light irradiation[J]. Journal of the American Chemical Society, 2014, 136(19): 6798-6801.
  • 4Taheri Najafabadi A. CO2 chemical conversion to useful products: an engineering insight to the latest advances toward sustainability[J]. International Journal of Energy Research, 2013, 37(6): 485-499.
  • 5Machado B F, Serp P. Graphene-based materials for catalysis[J]. Catalysis Science & Technology, 2012, 2(1): 54-75.
  • 6Liu W, Cai J, Ding Z, et al. TiO2/RGO composite aerogels with controllable and continuously tunable surface wettability for varied aqueous photocatalysis[J]. Applied Catalysis B: Environmental, 2015, 174: 421-426.
  • 7Fechete I, Wang Y, Védrine J C. The past, present and future of heterogeneous catalysis[J]. Catalysis Today, 2012, 189(1): 2-27.
  • 8Tang Z, Shen S, Zhuang J, et al. Noble-metal- promoted three-dimensional macroassembly of single-layered graphene oxide[J]. Angewandte Chemie, 2010, 122(27): 4707-4711.
  • 9Fan X, Manchon M G, Wilson K, et al. Coupling of Heck and hydrogenation reactions in a continuous compact reactor[J]. Journal of Catalysis, 2009, 267(2): 114-120.
  • 10William S, Hummers J R, Offeman R E. Preparation of graphitic oxide[J]. J Am Chem Soc, 1958, 80(6): 1339.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部